Coordinatore | THE UNIVERSITY OF EXETER
Organization address
address: Northcote House, The Queen's Drive contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 91˙200 € |
EC contributo | 91˙200 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-IRSES |
Funding Scheme | MC-IRSES |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-01-01 - 2017-12-31 |
# | ||||
---|---|---|---|---|
1 |
THE UNIVERSITY OF EXETER
Organization address
address: Northcote House, The Queen's Drive contact info |
UK (EXETER) | coordinator | 45˙600.00 |
2 |
TEL AVIV UNIVERSITY
Organization address
address: RAMAT AVIV contact info |
IL (TEL AVIV) | participant | 45˙600.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The efficiency of traditional semiconductor solar cells is subject to a fundamental limitation, known as the Shockley-Queisser recombination limit, and is found to be near 30 per cent. The invention in the early eighties of solar cell rectifying antennas (rectennas) - a combination of an optical antenna and a rectifying diode to efficiently absorb the incident solar radiation and directly convert the ac field across the antenna into the dc power - provides a way to overcome the limitation. The recent rapid technological progress in the design of different nano-dimensional structures gives rise to a new promising possibility in designing nanorectennas. A solar cell will incorporate a large array of such elements, which provide high conversion efficiency and can be produced cheaply in a roll-to-roll process. However, a practical realization of such devices requires precise theoretical modelling and experimental study to provide optimization of the antenna and nanocontact configuration. The project focuses on the physics and theoretical modelling of the nanorectenna performance. The rectification effect comes from the photo-assisted charge carrier tunneling through the nanotube energy gap. For the efficiency enhancement we propose using the coherent effect of the photon dressing of electron-hole pairs. Theoretical modelling will be carried out on the basis of the Landauer- Büttiker formalism extended to the case of photon-dressed electrons. The fundamental thermodynamic limitation of the rectenna efficiency and the prospective applications of the device will be studied. This multidisciplinary and challenging project relies on the complementary expertise of the consortium teams and is based on an original approach - nanoelectromagnetics – combining the electrodynamics of mesoscopic inhomogeneous media and quantum transport theory of charge carriers in structures with reduced dimensionality.'