CANTOR

Carbon-nanotube-based terahertz-to-optics rectenna

 Coordinatore THE UNIVERSITY OF EXETER 

 Organization address address: Northcote House, The Queen's Drive
city: EXETER
postcode: EX4 4QJ

contact info
Titolo: Ms.
Nome: Sarah
Cognome: Hill
Email: send email
Telefono: +44 1392 726206
Fax: +44 1392 723686

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 91˙200 €
 EC contributo 91˙200 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IRSES
 Funding Scheme MC-IRSES
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-01-01   -   2017-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EXETER

 Organization address address: Northcote House, The Queen's Drive
city: EXETER
postcode: EX4 4QJ

contact info
Titolo: Ms.
Nome: Sarah
Cognome: Hill
Email: send email
Telefono: +44 1392 726206
Fax: +44 1392 723686

UK (EXETER) coordinator 45˙600.00
2    TEL AVIV UNIVERSITY

 Organization address address: RAMAT AVIV
city: TEL AVIV
postcode: 69978

contact info
Titolo: Ms.
Nome: Lea
Cognome: Pais
Email: send email
Telefono: 97236408774
Fax: 97236409697

IL (TEL AVIV) participant 45˙600.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

effect    fundamental    limitation    charge    efficiency    theoretical    cell    structures    roll    solar    rectifying    photon    antenna   

 Obiettivo del progetto (Objective)

'The efficiency of traditional semiconductor solar cells is subject to a fundamental limitation, known as the Shockley-Queisser recombination limit, and is found to be near 30 per cent. The invention in the early eighties of solar cell rectifying antennas (rectennas) - a combination of an optical antenna and a rectifying diode to efficiently absorb the incident solar radiation and directly convert the ac field across the antenna into the dc power - provides a way to overcome the limitation. The recent rapid technological progress in the design of different nano-dimensional structures gives rise to a new promising possibility in designing nanorectennas. A solar cell will incorporate a large array of such elements, which provide high conversion efficiency and can be produced cheaply in a roll-to-roll process. However, a practical realization of such devices requires precise theoretical modelling and experimental study to provide optimization of the antenna and nanocontact configuration. The project focuses on the physics and theoretical modelling of the nanorectenna performance. The rectification effect comes from the photo-assisted charge carrier tunneling through the nanotube energy gap. For the efficiency enhancement we propose using the coherent effect of the photon dressing of electron-hole pairs. Theoretical modelling will be carried out on the basis of the Landauer- Büttiker formalism extended to the case of photon-dressed electrons. The fundamental thermodynamic limitation of the rectenna efficiency and the prospective applications of the device will be studied. This multidisciplinary and challenging project relies on the complementary expertise of the consortium teams and is based on an original approach - nanoelectromagnetics – combining the electrodynamics of mesoscopic inhomogeneous media and quantum transport theory of charge carriers in structures with reduced dimensionality.'

Altri progetti dello stesso programma (FP7-PEOPLE)

UF-NMR (2013)

Cell Metabolomics on A Chip By Integrated High-Resolution NMR Spectroscopy

Read More  

Q-NET (2011)

Quantum Nano-Electronics Training

Read More  

EUCITISPACE-II (2011)

The Space of Citizenship in Europe

Read More