IMAGEMELTHERAPYLRI

"Single cell level intravital imaging of response, tolerance, and resistance to targeted therapies"

 Coordinatore THE FRANCIS CRICK INSTITUTE LIMITED 

 Organization address address: 215 Euston Road, Gibbs Building
city: LONDON
postcode: NW1 2BE

contact info
Titolo: Ms.
Nome: Heather Joanne
Cognome: Woods
Email: send email
Telefono: 442076000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 231˙283 €
 EC contributo 231˙283 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-07-01   -   2015-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE FRANCIS CRICK INSTITUTE LIMITED

 Organization address address: 215 Euston Road, Gibbs Building
city: LONDON
postcode: NW1 2BE

contact info
Titolo: Ms.
Nome: Heather Joanne
Cognome: Woods
Email: send email
Telefono: 442076000000

UK (LONDON) coordinator 231˙283.20
2    CANCER RESEARCH UK

 Organization address address: ST JOHN STREET 407 ANGEL BUILDING
city: LONDON
postcode: EC1V 4AD

contact info
Titolo: Ms.
Nome: Holly
Cognome: Elphinstone
Email: send email
Telefono: +44 207 269 3524
Fax: +44 207 269 3585

UK (LONDON) participant 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

activate    tumour    microenvironment    erk    cells    inhibitors    drug    metastatic    cell    melanoma    signals    emergence    raf    cns    resistance    temporal    braf    tolerant    heterogeneity    mechanisms   

 Obiettivo del progetto (Objective)

'Oncogenic signalling by kinases presents a significant opportunity for cancer therapy. The B-Raf selective inhibitor, Vemurafenib, has shown great effect against B-Raf mutant melanoma patients. However, drug resistance emerges in nearly every case. Various mechanisms underlying this resistance are described, however these approaches usually overlook the heterogeneity of the tumour microenvironment, and do not provide information about the temporal aspects of drug response and eventual emergence of resistance. Therefore, uncovering the spatio-temporal heterogeneity, i.e., when, where, and how melanoma cells respond to drug and acquire resistance in a complex tumour microenvironment is the key step toward the comprehensive understanding of resistance mechanisms. To tackle these problems, we will investigate the tolerance and resistance to B-Raf inhibitors with single cell resolution in vivo. We have established melanoma cell lines stably expressing EKAR-EV biosensor that reports ERK activity in living cells. In vitro, the melanoma cells show homogenous responses to BRaf inhibitors, whereas intravital analysis indicate that there is considerable heterogeneity in ERK activity within tumours. This cannot be attributed simply B-Raf mutation as all cells contain the oncogene, and we hypothesize that additional signals from the microenvironment activate ERK, possibly putting the neighbouring melanoma cells in drug-tolerant state. Similar mechanisms are possible at metastatic locations. The tumour microenvironment of CNS metastases is quite different from those of other organs, it is particularly enriched in RTK ligands. In the longer term, we will study how metastatic melanoma cells may respond to and tolerate the drugs in the CNS. In summary we aim to identify the micro-environmental signals that activate ERK, and explore how these signals may confer tolerant to BRaf inhibition and ultimately aid the emergence of drug resistant clones.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MACROPHAGE ITGB3 (2013)

Cell autonomous role of beta3 integrin: function in macrophages

Read More  

PRENCTUM (2012)

Protein tyrosine phosphatases as regulators of N-cadherin-mediated tumor cell migration

Read More  

IONTRAC (2011)

Ion Transport Proteins in Control of Cancer Cell Behaviour

Read More