AXOTRANSMAP

Assembling a functional map of axonal signalling endosomes

 Coordinatore UNIVERSITY COLLEGE LONDON 

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Ms.
Nome: Kolasinska
Cognome: Kamila
Email: send email
Telefono: 442031000000
Fax: 442078000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-11-01   -   2015-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Ms.
Nome: Kolasinska
Cognome: Kamila
Email: send email
Telefono: 442031000000
Fax: 442078000000

UK (LONDON) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

transport    endosomes    retrograde    carriers    neuronal    signalling    axonal    soma   

 Obiettivo del progetto (Objective)

'The polarisation of neurons in somatodendritic and axonal compartments allows signal propagation over long distances. Despite the important role played by electrical signals, fast axonal transport is crucial for long-range communication between the soma and distal synapses, which is carried out by vesicular transport mechanisms. Neurotrophins and their receptors are internalised at axon terminals by clathrin-mediated endocytosis and conveyed by signalling endosomes to the soma, where they activate transcriptional responses regulating neuronal homeostasis and survival. However, little is known about the identity and the dynamics of the organelles involved. The aim of my project is to build a functional and physical map of axonal retrograde carriers in specific neuronal types, which are the target of important human diseases. For this purpose, I will exploit a new developed affinity purification strategy using the binding fragment of tetanus neurotoxin (HC) conjugated to monocrystalline iron oxide nanoparticles (MIONs). At different time points after internalisation, retrograde carriers will be magnetically purified and submitted to mass-spectrometry analysis. The kinetics of endosomal maturation will be assessed using quantitative label-free SILAC protocols. These results will uncover new components of signalling endosomes and identify dysfunctions of this pathway that are at the basis of motor and sensory neuropathies.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ERGTB (2013)

Exact Results in Gauge Theory and Beyond

Read More  

SIHI (2012)

Stress-Induced Hypertension and the Role of the Neuroimmune System

Read More  

EVOPLASTINV (2009)

Evolving Phenotypic plasticity and Plant Invasiveness: An inter-disciplinary approach

Read More