DPNLIPIDMEMBRANES

In depth characterization of bio-mimetic lipid membrane structures generated by dip-pen nanolithography

 Coordinatore Karlsruher Institut fuer Technologie 

 Organization address address: Kaiserstrasse 12
city: Karlsruhe
postcode: 76131

contact info
Titolo: Ms.
Nome: Irina
Cognome: Schott
Email: send email
Telefono: +49 721 608 25414
Fax: +49 721 608 25403

 Nazionalità Coordinatore Germany [DE]
 Totale costo 168˙794 €
 EC contributo 168˙794 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-01   -   2015-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Karlsruher Institut fuer Technologie

 Organization address address: Kaiserstrasse 12
city: Karlsruhe
postcode: 76131

contact info
Titolo: Ms.
Nome: Irina
Cognome: Schott
Email: send email
Telefono: +49 721 608 25414
Fax: +49 721 608 25403

DE (Karlsruhe) coordinator 168˙794.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

phospholipid    substrate    dpn    proteins    model    lipid    ink    membranes    tip    biological       membrane    lipids    details    surface    structures    combination    organization    stacks   

 Obiettivo del progetto (Objective)

'Dip-pen nanolithography with lipids (L-DPN) has become a unique tool for the fabrication of structured lipid membranes. Biological membranes are heterogeneous structures composed of a combination of lipids, which gives the membrane its two-dimensional structure and fluidity, and proteins, which provide the membrane diverse biological functions. DPN uses the tip of an atomic force microscope to directly deposit, by physisorption, the phospholipid ink onto a substrate. Depending on the surface wetting properties, the phospholipid ink tends to stack three dimensionally on the surface or rather spreads to form thin homogeneous membranes. In addition, the phospholipid ink may contain admixings of different functionalized lipids, so that e.g. proteins tagged accordingly can be selectively bound to the lipid patterns. This results in fluid, multivalent biomimetic-patterned membrane systems that are suitable model systems to study biological processes. An outstanding challenge in L-DPN is to monitor and elucidate the whole process from writing and self-organization in air to the reorganization of the stacks under water in details. Special attention should be paid to phase separation phenomena: it is still an open question, whether ink mixtures get transferred in equal proportions from tip to substrate and whether an homogeneously distribution of admixing can be generally assumed within the generated structures. The aim of the proposed project is a detailed study and characterization of all processes involved in the generation and details on the organization of bio-mimetic phospholipid membrane stacks generated by DPN. Within this aim, the patterning behaviour of phospholipids in L-DPN will be studied systematically, a structural model of membrane stacks generated by L-DPN will be provided using a unique combination of microscopy techniques and a time resolved analysis of lipid spreading in liquid and of binding events on the lipid structures will also be performed.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SEGREG-INTEGRATION (2008)

Between Segregation and Social Integration: Recent Immigrants and Foreign Workers in the USA and in the UK

Read More  

NEURASYNC (2009)

Academic-Industrial Training Network on Alpha-Synuclein-related Brain Diseases

Read More  

CODEC (2014)

Cellular Network based Device-to-Device Wireless Communications

Read More