ANTOMIC

Quantum nanoantennas for atomic scale optical spectroscopy

 Coordinatore Asociacion - Centro de Investigacion Cooperativa en Nanociencias - CIC NANOGUNE 

 Organization address address: Tolosa Hiribidea 76
city: San Sebastian
postcode: 20018

contact info
Titolo: Mr.
Nome: Miguel
Cognome: Odriozola
Email: send email
Telefono: +34 943 574 000
Fax: +34 943 574 001

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Asociacion - Centro de Investigacion Cooperativa en Nanociencias - CIC NANOGUNE

 Organization address address: Tolosa Hiribidea 76
city: San Sebastian
postcode: 20018

contact info
Titolo: Mr.
Nome: Miguel
Cognome: Odriozola
Email: send email
Telefono: +34 943 574 000
Fax: +34 943 574 001

ES (San Sebastian) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

electronic    quantum    quantization    atomic    resonances    antennas    sizes    light    nanowires    electrons    optoelectronic    coupling    detection    plasmon    nanodevices    excitation    structure    object    optical    photons    emission    scattering   

 Obiettivo del progetto (Objective)

'The interaction of light with structures much smaller than its wavelength, i.e. far below the diffraction limit, is enhanced by the effect that electromagnetic fields cause in the charge of the object. The excitation of plasmons enhances and focuses the light in the proximity of the nanostructure, mediating the energy exchange between photons and electrons. As the size of metal nanostructures and optoelectronic nanodevices approaches atomic scale dimensions, quantization effects in their electronic and plasmon structure gain increasing relevance in light scattering. Understanding the coupling of photons with electrons in the presence of quantum effects is crucial for improving the functionality of optoelectronic nanodevices like light emitting diodes or for the performance of nanoparticles in fields like medicine, or catalysis. In this proposal we will study the quantum limits of light emission and scattering by metallic and molecular nanowires of nanometer sizes. We will identify their plasmon resonances and correlate them with their quantized electronic structure. The goal is to prove that nanowires of atomic sizes behave as optical antennas due to the quantization of their plasmon structure. This would mean that excitation of plasmon resonances can enhance the coupling between photons and electronic transitions in the nanowire. Since this research project bridges the fields of atomic-scale spectroscopy and nanooptics, a novel experimental approach is proposed. We will use low temperature scanning tunnelling and force microscopies, coupled to a light excitation and detection set-up, to resolve at the atomic scale both electronic structure and light scattering/emission by the atomic-sized antennas in response to optical/electron excitations. To enhance the field focusing at the quantum object we will use nanofabricated optical antennas as tips. An in-vacuum Fourier Transform detection scheme will be developed to extend the spectral detection to the mid-infrared.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DISCOM (2012)

Discourse connectives and the mind: a cross-linguistic analysis of processing and acquisition

Read More  

URBANMUSICS (2012)

Urban musics and musical practices in sixteenth-century Europe

Read More  

THC-ASKID (2011)

T Helper cell lineages and their Cytokines in Autoimmune SKin Disease

Read More