NEWLIGHT

New Light on Chemical Dynamics

 Coordinatore THE UNIVERSITY OF EDINBURGH 

 Organization address address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL

contact info
Titolo: Ms.
Nome: Angela
Cognome: Noble
Email: send email
Telefono: +44 131 650 9024
Fax: +44 131 651 4028

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EDINBURGH

 Organization address address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL

contact info
Titolo: Ms.
Nome: Angela
Cognome: Noble
Email: send email
Telefono: +44 131 650 9024
Fax: +44 131 651 4028

UK (EDINBURGH) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

molecular    simulations    techniques    diffraction    harmonic    spectroscopy    dynamics    tools    ultrafast   

 Obiettivo del progetto (Objective)

'New theory and computational methods are crucial to unlock the full potential of new ultrafast experiment soon to be made possible by light sources currently under construction, such as the European XFEL in Hamburg and the LCLS in Stanford. This proposal focuses on ultrafast diffraction imaging, either by x-rays or electrons, and a new intense-laser technique, high harmonic spectroscopy. The distinct advantage of diffraction based techniques is that they allow a direct interpretation of molecular dynamics in terms of the motion of atoms, while the high harmonic spectroscopy is spectacularly sensitive to the electronic changes that accompany chemical transformations and which often govern the outcome of photochemical reactions. In short, these two sets of techniques have the potential to revolutionize our ability to observe and control photochemistry and ultrafast dynamics, but the theoretical tools to interpret them are missing. I will develop these tools and significantly advance the state-of-the-art in quantum simulations by making realistic start-to-finish simulations of the experiments possible. This can only be achieved by adapting cutting-edge techniques from atomic, molecular and optical physics.'

Altri progetti dello stesso programma (FP7-PEOPLE)

COMPACT BINARIES (2008)

Compact Binaries as Gravitational-Wave Sources

Read More  

AAPLQIC (2013)

Light-phonon quantum interface with atomic arrays in a cavity

Read More  

MEDDICA (2009)

Medical Devices Design in Cardiovascular Applications

Read More