SENSORIMOTORFLY

Neural bases of visually guided walking in the fly

 Coordinatore FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD 

 Organization address address: AVENIDA BRASILIA
city: LISBOA
postcode: 1400 038

contact info
Titolo: Dr.
Nome: Tania
Cognome: Vinagre
Email: send email
Telefono: 351210000000
Fax: 351210000000

 Nazionalità Coordinatore Portugal [PT]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD

 Organization address address: AVENIDA BRASILIA
city: LISBOA
postcode: 1400 038

contact info
Titolo: Dr.
Nome: Tania
Cognome: Vinagre
Email: send email
Telefono: 351210000000
Fax: 351210000000

PT (LISBOA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

ongoing    neurons    guided    model    motion    locomotion    generate    behaviours    orientation    motor    animals    brains    stimuli    sensory    visually    visual   

 Obiettivo del progetto (Objective)

'Knowing how to get to a food source, approximate towards conspecifics or avoid a predator, are orientation behaviours with remarkable consequence for the success of an individual and the fitness of the species. They all depend on the brain’s ability to process sensory stimuli and integrate this with ongoing behaviour to generate spatial information that guides actions. Although much is known about how sensory neurons process incoming stimuli, or how motor neurons generate movements, it remains unclear how other neurons in our brains represent more integrative processes that lead to the transformation of sensation into action. For visual animals, visually guided locomotion is an ethologically relevant behaviour that is easy to reproduce in a laboratory environment, and depends on the integration of visual motion signals with ongoing locomotion. Through the identification of interconnected neurons, and analysis of their activity patterns in simultaneous with quantitative measurements of visually guided locomotion, we aim to determine the functional organization of visuomotor circuits essential to orientation behaviours. In particular, we would like to understand how self-generated motion vision provides information to guide the animal’s orientation behaviours. To transcend the experimental limitations found in mammalian model systems, such as the numerical complexity of their brains, or the more limited resources available to systematically identify and perturb neurons of a circuit, we employ the fruitfly, Drosophila melanogaster, as our model organism. Her rich repertoire of visually guided behaviours combined with her unparalleled arsenal of genetic tools, and with head-fixed physiology in behaving animals, provide an ideal platform for a multilevel research program to study the neural bases of orientation behaviours while establishing conserved principles of sensory-motor processing.'

Altri progetti dello stesso programma (FP7-PEOPLE)

RESTURE (2009)

Researchers for the Future

Read More  

QNDINTERF (2009)

Atom interferometry at the Heisenberg limit using an in-cavity Bose-Einstein condensate and quantum non demolition detection

Read More  

TRIMBAT (2008)

Trimeric Bacterial Autotransporters

Read More