Coordinatore | INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM VZW
Organization address
address: Kapeldreef 75 contact info |
Nazionalità Coordinatore | Belgium [BE] |
Totale costo | 4˙580˙086 € |
EC contributo | 3˙385˙000 € |
Programma | FP7-ICT
Specific Programme "Cooperation": Information and communication technologies |
Code Call | FP7-ICT-2013-10 |
Funding Scheme | CP |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-09-01 - 2016-08-31 |
# | ||||
---|---|---|---|---|
1 |
INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM VZW
Organization address
address: Kapeldreef 75 contact info |
BE (LEUVEN) | coordinator | 0.00 |
2 |
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
Organization address
address: Hansastrasse contact info |
DE (MUNCHEN) | participant | 0.00 |
3 |
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE
Organization address
address: Domaine de Voluceau, Rocquencourt contact info |
FR (LE CHESNAY Cedex) | participant | 0.00 |
4 |
INTEL CORPORATION SAS
Organization address
address: RUE DE PARIS 2 LES MONTALETS contact info |
FR (Meudon) | participant | 0.00 |
5 |
NUMERICAL ALGORITHMS GROUP LTD
Organization address
address: JORDAN HILL ROAD WILKINSON HOUSE contact info |
UK (OXFORD) | participant | 0.00 |
6 |
T-SYSTEMS SOLUTIONS FOR RESEARCH GMBH
Organization address
address: MUENCHNERSTRASSE 20 contact info |
DE (WESSLING) | participant | 0.00 |
7 |
UNIVERSITA DELLA SVIZZERA ITALIANA
Organization address
address: VIA LAMBERTENGHI contact info |
CH (LUGANO) | participant | 0.00 |
8 |
UNIVERSITE DE VERSAILLES SAINT-QUENTIN-EN-YVELINES.
Organization address
address: Avenue de Paris contact info |
FR (VERSAILLES) | participant | 0.00 |
9 |
UNIVERSITEIT ANTWERPEN
Organization address
address: PRINSSTRAAT contact info |
BE (ANTWERPEN) | participant | 0.00 |
10 |
VYSOKA SKOLA BANSKA - TECHNICKA UNIVERZITA OSTRAVA
Organization address
address: 17 Listopadu contact info |
CZ (OSTRAVA) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
Numerical simulation is a crucial part of science and industry in Europe. The advancement of simulation as a discipline relies on increasingly compute intensive models that require more computational resources to run. This is the driver for the evolution to exascale. Due to limits in the increase in single processor performance, exascale machines will rely on massive parallelism on and off chip, with a complex hierarchy of resources. The large number of components and the machine complexity introduce severe problems for reliability and programmability. The former of these will require novel fault-aware algorithms and support software. In addition, the scale of the numerical models exacerbates the difficulties by making the use of more complex simulation algorithms necessary, for numerical stability reasons. A key example of this is increased reliance on solvers. Such solvers require global communication, which impacts scalability, and are often used with preconditioners, increasing complexity again. Unless there is a major rethink of the design of solver algorithms, their components and software structure, a large class of important numerical simulations will not scale beyond petascale. This in turn will hold back the development of European science and industry which will fail to reap the benefits from exascale.nThe EXA2CT project brings together experts at the cutting edge of the development of solvers, related algorithmic techniques, and HPC software architects for programming models and communication. It will take a revolutionary approach to exascale solvers and programming models, rather than the incremental approach of other projects. We will produce modular open source proto-applications that demonstrate the algorithms and programming techniques developed in the project, to help boot-strap the creation of genuine exascale codes.