FFL FUNCTION

Computational roles of Feed-Forward Loops in neural circuits

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yeuda
Email: send email
Telefono: +972 26586618
Fax: +972 722447007

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yeuda
Email: send email
Telefono: +972 26586618
Fax: +972 722447007

IL (JERUSALEM) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

neurons    cutting    network    roles    networks    animals    biology    functional    computational    behaving    neural    experimental    edge    modeling    decipher    elegans    motifs    circuits    ffls    dynamics   

 Obiettivo del progetto (Objective)

'A major goal of Systems Biology is to understand the design principles underlying Biological Networks. Of particular interest are the computational roles of network motifs - circuits that appear in the network multiple times, significantly more than randomly expected. But why would such circuits evolve over and over again in the network?

While extensively studied in transcriptional networks, the emergence of network motifs in neural networks is poorly understood. Here we propose to focus on one of the most abundant motifs - the Feed-Forward Loop (FFL) – and study its functional roles in neural networks. To do this, we will use C. elegans worms as the animal model system. With a compact neural network (302 neurons) and a fully-mapped wiring diagram, C. elegans offers a unique opportunity of studying functional dynamics in neural networks in an unprecedented single neuron resolution and in freely-behaving animals. We will use state-of-the-art optogenetic tools together with cutting-edge microfluidic devices to activate/inhibit and measure activity of individual neurons. This experimental system will be combined with modeling and theoretical approaches to decipher the computational roles of FFLs in neural circuits. Moreover, we will study functional dynamics of various FFLs in freely-behaving animals to decipher how circuitry computation eventually dictates behavioral outputs.

Throughout the proposed project, we will use a combination of cutting-edge experimental techniques coupled with extensive computational analyses, modeling and theory. The aims of this interdisciplinary project together with the system-level approaches put it in the front line of research in the Systems Biology field.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SYNERGY (2011)

Do Synechococcus regulatory networks underpin marine ecological distinctness?

Read More  

GENTRECAD (2008)

"GENOME-WIDE CHARACTERIZATION OF TRANSCRIPTIONAL REGULATORY ELEMENTS, PATHWAYS AND ASSOCIATED GENETIC VARIATIONS INVOLVED IN THE PATHOGENESIS OF CORONARY ARTERY DISEASE"

Read More  

MASS (2013)

Load Monitoring of Aerospace Structures Through Shape Changes

Read More