FFL FUNCTION

Computational roles of Feed-Forward Loops in neural circuits

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yeuda
Email: send email
Telefono: +972 26586618
Fax: +972 722447007

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yeuda
Email: send email
Telefono: +972 26586618
Fax: +972 722447007

IL (JERUSALEM) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

networks    functional    animals    roles    elegans    network    modeling    dynamics    behaving    edge    experimental    decipher    computational    ffls    biology    cutting    circuits    motifs    neurons    neural   

 Obiettivo del progetto (Objective)

'A major goal of Systems Biology is to understand the design principles underlying Biological Networks. Of particular interest are the computational roles of network motifs - circuits that appear in the network multiple times, significantly more than randomly expected. But why would such circuits evolve over and over again in the network?

While extensively studied in transcriptional networks, the emergence of network motifs in neural networks is poorly understood. Here we propose to focus on one of the most abundant motifs - the Feed-Forward Loop (FFL) – and study its functional roles in neural networks. To do this, we will use C. elegans worms as the animal model system. With a compact neural network (302 neurons) and a fully-mapped wiring diagram, C. elegans offers a unique opportunity of studying functional dynamics in neural networks in an unprecedented single neuron resolution and in freely-behaving animals. We will use state-of-the-art optogenetic tools together with cutting-edge microfluidic devices to activate/inhibit and measure activity of individual neurons. This experimental system will be combined with modeling and theoretical approaches to decipher the computational roles of FFLs in neural circuits. Moreover, we will study functional dynamics of various FFLs in freely-behaving animals to decipher how circuitry computation eventually dictates behavioral outputs.

Throughout the proposed project, we will use a combination of cutting-edge experimental techniques coupled with extensive computational analyses, modeling and theory. The aims of this interdisciplinary project together with the system-level approaches put it in the front line of research in the Systems Biology field.'

Altri progetti dello stesso programma (FP7-PEOPLE)

HYDELTECH (2012)

Synthesis of Biomass Sourced Value Added Chemicals by Hydrothermal Electrolysis Technique

Read More  

PERIOPAIN (2008)

Determination of the role of P. gingivalis and P. intermedia proteases in mono- and synergistic mixed microbial infections in a mouse model of periodontal disease

Read More  

FAR-RIGHTECO (2013)

Appropriating the 'Legitimate': Far-Right Discourses on Ecology

Read More