TGRES

The Greenhouse Earth System

 Coordinatore UNIVERSITY OF BRISTOL 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-01-01   -   2018-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mrs.
Nome: Audrey
Cognome: Michael
Email: send email
Telefono: +44 117 3317371

UK (BRISTOL) hostInstitution 2˙500˙000.00
2    UNIVERSITY OF BRISTOL

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Prof.
Nome: Richard David
Cognome: Pancost
Email: send email
Telefono: +44 117 3317244
Fax: +44 117 9277985

UK (BRISTOL) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

records    climates    proxies    eocene    generate    cycling    climate    settings    continental    biogeochemical    earth    temperature    models    modern    impact    history    precipitation    first   

 Obiettivo del progetto (Objective)

'Human activity is fundamentally changing the chemical composition of the atmosphere and warming the Earth. However, the impact of these changes, especially on continental precipitation patterns and biogeochemical cycles, remains poorly understood. The study of ancient climates allows a mechanistic exploration of the Earth system and the opportunity to evaluate new generations of climate models. My proposed research will focus on three inter-related paleoclimatic themes, applied to the very warm climates of the Early Eocene, one of the most fascinating intervals in Earth history. First, I will generate new records of continental temperature using bacterial membrane lipid based proxies that have been recalibrated and critically evaluated for wetland environments. Second, I will assess how the global hydrological cycle responded to both transient and long-term warmth, including evaluating precipitation change and its impact on erosional and weathering regimes; this will entail the development of compound-specific hydrogen isotopic tools in modern contexts, doubling the number of such deep time records, and interpreting those data in the context of isotope-enabled climate models. Third, I will generate the first Paleogene records of terrestrial methane cycling using lipids derived from methanotrophs and methanogens, calibrated in modern settings and applied to Eocene lignites. These objectives are intrinsically linked via the feedbacks between pCO2, temperature, hydrology and carbon cycling. Each objective will comprise: the development of the proxies in modern settings in collaboration with world-leading biogeochemists; creation of unprecedented and globally widespread geochemical records for the Eocene; and quantitative interpretation of our findings using climate/biogeochemical models. Collectively, the work will exploit very recent discoveries to develop or create new proxies and apply them to a major challenge in understanding Earth history.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

OSAI (2013)

Membranous nephropathy : a model for solving organ-specific auto-immunity (OSAI)

Read More  

VIAMASS (2014)

Visual Recognition Made Super-Scalable

Read More  

VIP (2010)

Voxel Imaging PET Pathfinder

Read More