MONOTOMACRO

Studying in vivo differentiation of monocytes into intestinal macrophages and their impact on gut homeostasis

 Coordinatore WEIZMANN INSTITUTE OF SCIENCE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-01-01   -   2018-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Ms.
Nome: Gabi
Cognome: Brenstein
Email: send email
Telefono: +972 8 934 6728
Fax: +972 8 934 4165

IL (REHOVOT) hostInstitution 2˙500˙000.00
2    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Prof.
Nome: Steffen
Cognome: Jung
Email: send email
Telefono: +972 8 934 2787
Fax: +972 8 934 4141

IL (REHOVOT) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

players    monocyte       intestine    differentiation    insights    molecular    generation    monocytes    experimental    tissue    inflammation    fates    progress    homeostasis    ibd    phi    vivo    education    gut   

 Obiettivo del progetto (Objective)

'Monocytes are central players in inflammation. Progress in understanding their differentiation in target tissues bears potential to manipulate their activities for therapeutic purposes. Here we propose to study the generation of intestinal macrophages (MΦs) as a paradigm, taking advantage of a unique experimental system to elucidate in vivo monocyte fates. The intestine hosts billions of bacteria that assist food uptake, but also pose a challenge, as we have to tolerate these beneficial commensals, yet rapidly mount immune responses to invading pathogens. Failure to maintain this balance causes inflammatory bowel disorders (IBD). Gut resident MΦs are key players in gut homeostasis and inflammation. Here we will study molecular parameters governing their generation from monocytes, as well as their interactions with the immediate tissue surrounding under pathological conditions. We focus on the molecular mechanisms leading to education of monocytes in small and large intestine using genome wide profiling of gene expression, chromatin state and transcription factor binding of monocytes and MΦs. Secondly, we will investigate epithelial and microflora-derived instructing cues, as well as sensory molecules on the MΦs that drive the education. Thirdly, we will study the impact of MΦs that fail to be trained and their role in the development of inflammation. Finally, we will use the insights gained to develop monocyte manipulation strategies that could aid the future development of IBD therapies. Our experimental system allows to follow the in vivo differentiation of engrafted monocytes, as physiological precursor cells, that acquire in a rapid synchronized development in the gut tissue physiologically relevant fates. Expected include (1) fundamental insight into the acquisition and maintenance of MΦ identities in a complex tissue context, (2) progress in our understanding of gut homeostasis and IBD, and (3) guiding insights for future monocyte-targeted therapy.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

HUMGENSIZE (2012)

Cellular pathways determining growth and human brain size

Read More  

BIOMOLECULAR_COMP (2009)

Biomolecular computers

Read More  

MORPHODYNAMICS (2012)

Morphodynamics in Plants: from gene to shape

Read More