ERC-ID

Excision Repair and chromatin interaction dynamics

 Coordinatore ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-01-01   -   2018-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM

 Organization address address: 's Gravendijkwal 230
city: ROTTERDAM
postcode: 3015CE

contact info
Titolo: Dr.
Nome: Willem
Cognome: Vermeulen
Email: send email
Telefono: 31107043194
Fax: 31107044743

NL (ROTTERDAM) hostInstitution 2˙500˙000.00
2    ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM

 Organization address address: 's Gravendijkwal 230
city: ROTTERDAM
postcode: 3015CE

contact info
Titolo: Mrs.
Nome: Riet
Cognome: Van Zeijl
Email: send email
Telefono: 31107043154
Fax: 31107044743

NL (ROTTERDAM) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

agents    patients    pathways    tc    cell    ddr    sensitive    cs    oxidative    display    cancer    cells    xp    lesions    aging    syndrome    damage    ner    dna    uvss    transcription    whereas    repair    genome   

 Obiettivo del progetto (Objective)

'DNA damage is a fact of life. Lesions hamper genome function, induce mutations causing cancer and trigger senescence or cell death contributing to aging. Therefore cells are equipped with a sophisticated defence machinery: DNA Damage Response (DDR) including different repair pathways. Nucleotide excision repair (NER) is versatile repair process, eliminating helix-distorting lesions, e.g. bulky adducts and sun-induced lesions. Very cytotoxic transcription-blocking lesions are removed by a dedicated sub-pathway, transcription-coupled (TC-)NER. The impact of NER is highlighted by 4 disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and UV-sensitive syndrome (UVSS). XP patients are cancer-prone due to global-genome (GG-)NER defects, whereas CS patients, impaired in TC-NER, display progeroid features, which are thought to derive from endogenous oxidative DNA lesions hampering transcription. Consistent with this, CS cells are sensitive to oxidative agents, whereas TC-NER-deficient UVSS patients are not sensitive to oxidative agents and do not display aging features. This implies lesion-specific TC-NER, arguing for distinct operational TC-repair machineries. The relative importance of DDR pathways varies with the type of damage, cell type and stage of development determining onset of cancer and aging pathologies. The challenging ambition of this proposal is to gain in depth insight into the role of NER in protection against cancer and aging by an integral multi-disciplinary approach which includes new mouse models for novel TC-NER genes, live cell and tissue NER kinetic analyses, advanced proteomics and analysis of NER-related chromatin dynamics to dissect cross-talk with other pathways. The strength of this project is the comprehensive strategy, availability of unique tools (e.g. collection of bona fide NER mutant mice), operational top notch technical platforms for all proposed approaches and proven competence and expertise.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

BIOCOM (2010)

Biotic community attributes and ecosystem functioning: implications for predicting and mitigating global change impacts

Read More  

SIMP (2008)

Ultra-high-Q Physics: Towards single molecules and phonons

Read More  

MACDOPRO (2011)

Macro domain proteins in the cellular stress response and links to human disease

Read More