Coordinatore | KING'S COLLEGE LONDON
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 2˙255˙659 € |
EC contributo | 2˙255˙659 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2013-ADG |
Funding Scheme | ERC-AG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-12-01 - 2018-11-30 |
# | ||||
---|---|---|---|---|
1 |
KING'S COLLEGE LONDON
Organization address
address: Strand contact info |
UK (LONDON) | hostInstitution | 2˙255˙659.00 |
2 |
KING'S COLLEGE LONDON
Organization address
address: Strand contact info |
UK (LONDON) | hostInstitution | 2˙255˙659.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'We want to determine how oxidants are sensed and transduced into a biological effect within the cardiovascular system. The proposed work will focus on thiol-based redox sensors, defining their role in heart and blood vessel function during health and disease. Although this laboratory has studied the molecular basis of redox signaling for more than a decade, the subject is still in its relative infancy with considerable scope for major advances. Oxidant signaling remains a ‘hot topic’ with high profile studies confirming a fundamental role for redox control of protein and cellular function continuing to emerge. The molecular basis of redox sensing is the reaction of an oxidant with target proteins. This gives rise to oxidative post-translational modifications, most commonly of cysteinyl thiols, potentially altering the activity of proteins to regulate cell or tissue function. One of the reasons there are so many unanswered questions about redox sensing and signaling is the diversity of oxidant molecules produced by cells that can interact with sensor proteins to alter their function. This application is aimed at extending our knowledge of redox sensing and signalling, allowing us to define its importance in cardiovascular health and disease.'
"Advanced Lagrangian Optimization, Receptivity and Sensitivity analysis applied to industrial situations"
Read More