SOLAR BEYOND SILICON

Nanoengineering High-Performance Low-Cost Perovskite Solar Cells Utilising Singlet Fission Materials

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +441223 333543
Fax: +441223 332988

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 294˙219 €
 EC contributo 294˙219 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-10-13   -   2017-10-12

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +441223 333543
Fax: +441223 332988

UK (CAMBRIDGE) coordinator 294˙219.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

expertise    prof    spectroscopy    oe    solar    pv    transferred    singlet    breakthroughs    area    perovskite    world    fission    generation    device    ultrafast    group    recent    conventional    energy   

 Obiettivo del progetto (Objective)

'This project aims to combine two recent breakthroughs in solution-processed thin-film solar photovoltaics (PVs) to demonstrate a low-cost, stable PV device with an efficiency approaching conventional crystalline silicon devices. The aim will be achieved by integrating singlet fission, a process capable of pushing PV efficiencies beyond conventional limits, with recent exciting perovskite results. The researcher is uniquely suited to this ambitious project, which will engage him with world-leading techniques, collaborations, and transferrable skills and help him to achieve his goal of establishing a leading UK-based device spectroscopy research group.

The project comprises an outgoing phase in Prof. Valdimir Bulovic’s Organic & Nanostructured Electronics Group at the Massachusetts Institute of Technology, where their unrivalled expertise in the deposition and nanopatterning of materials will be applied to perovskite/singlet fission devices. This expertise will be transferred back to Prof. Sir Richard Friend’s Optoelectronics (OE) Group at Cambridge University, world-leaders in ultrafast spectroscopy. Device behaviour will be elucidated and performance optimised by studying ultrafast phenomena such as the dynamics and mechanism of charge generation. Such a partnership of high-end nanoengineering and ultrafast spectroscopy is yet to be achieved and is likely to lead to revolutionary breakthroughs.

The work will ensure that state-of-the-art expertise not currently available in the European Research Area (ERA) is transferred to the European community. This will create strong international links between the two leading groups, with enormous potential for intellectual property generation and industry involvement through OE Group spin-outs and partners and knowledge transfer from interaction with successful enterprises in the Boston area. This will increase Europe’s competitiveness in the solar energy sector and ensure its energy security and emission targets are reached.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CELSYS SHOCK (2014)

Autodigestion in Hemorrhagic Shock and Acute Heart Failure: a Cell-to-System Approach to Pathophysiology and Therapy

Read More  

NEUROTHERAPY (2010)

Cellular Mechanisms and Therapies for Rett Syndrome

Read More  

MEAC (2009)

Multiple ergodic averages and combinatorics

Read More