NANODAOHP

Nanoparticle based direct absorption oscillating heat pipes for solar thermal systems

 Coordinatore UNIVERSITY OF LEEDS 

 Organization address address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hamilton
Email: send email
Telefono: +44 113 343 4090
Fax: +44 113 343 0949

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS

 Organization address address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hamilton
Email: send email
Telefono: +44 113 343 4090
Fax: +44 113 343 0949

UK (LEEDS) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

solar    extends    transfer    pipes    suited    nanoparticles    oscillating    absorption    pipe    uniquely    thermal    energy    direct    heat    drive    fellow   

 Obiettivo del progetto (Objective)

'Developing sustainable solar energy technology becomes extremely important to secure our energy future. A highly novel solar thermal technology, from both nanotechnology and phase change approaches, is proposed in this project to address the limitations associated with conventional solar thermal collectors. In this innovative technology, direct absorption nanoparticles are used to overcome the surface-controlled heat transfer limitation and absorb solar energy directly in the carrying fluid, and oscillating vapour bubbles (in oscillating heat pipes) are used to drive the fluids instead of pumps. Preliminary studies have shown the feasibility of the new concept, which has both prosperous scientific and applicaton propsects. Scientifically, it extends the direct absorption nanoparticles into a phase change domain, and practically it could promote the emergence of a new generation of solar collector. A systematic program is proposed in this project to address the challenges associated with the novel concept, which extends from suitable direct absorption nanofluid formulation, understanding the role of nanoparticles in the evaporation and condensation process, to its performance in ossillating heat pipes. The project is an ambitious, highly novel piece of work ideally suited to a Fellow with a strong background in solar energy and thermal science and engineering. The Fellow in question, Dr Lizhan Bai is perfectly (perhaps uniquely) suited to drive this project to success as he has independently designed, constructed and experimented with a number of challenging flow and heat transfer devices, especially heat pipe systems, and has outstanding analytical and mathematical modelling capability, which will contribute uniquely to the project. It will allow significant knowledge transfer into Europe, especially heat pipe systems, and create potentials long term collaborations and mutually beneficial co-operation between Europe and China.'

Altri progetti dello stesso programma (FP7-PEOPLE)

INDIREA (2013)

Individualised Diagnostics and Rehabilitation of Attention

Read More  

CRITICS (2011)

Towards targeting chemokine receptors CCR7 and CCRL1 to control the crossroads of tumor-host interactions

Read More  

CARBONCOMP (2011)

High-throughput development of carbon-polymer nanocomposites for marine applications

Read More