CAVITYMICROSCOPE

A Cavity-based Microscope for Quantum Gases

 Coordinatore TECHNISCHE UNIVERSITAET KAISERSLAUTERN 

 Organization address address: GOTTLIEB-DAIMLER-STRASSE Geb. 47
city: KAISERSLAUTERN
postcode: 67663

contact info
Titolo: Mr.
Nome: Berthold
Cognome: Klein
Email: send email
Telefono: +49 631 205 3602
Fax: +49 631 205 4380

 Nazionalità Coordinatore Germany [DE]
 Totale costo 262˙975 €
 EC contributo 262˙975 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2017-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET KAISERSLAUTERN

 Organization address address: GOTTLIEB-DAIMLER-STRASSE Geb. 47
city: KAISERSLAUTERN
postcode: 67663

contact info
Titolo: Mr.
Nome: Berthold
Cognome: Klein
Email: send email
Telefono: +49 631 205 3602
Fax: +49 631 205 4380

DE (KAISERSLAUTERN) coordinator 262˙975.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

single    impurities    prof    iof    quantum    complementary    cavity    limitations    resolution    gas    finesse    ultracold    expertise    return    imaging    cavitymicroscope    gases    outgoing    fellow   

 Obiettivo del progetto (Objective)

'Exploiting fascinating quantum properties for novel technical applications is appealing but still a dream. However, fundamental understanding of quantum systems and their behavior can be obtained by high-resolution imaging of model systems, such as ultracold quantum gases. The limitations of the current generation of such quantum gas microscopes restrict accessible regimes and applications. The IOF 'CavityMicroscope' will develop a novel microscope, based on sensitive detection of atoms evolving within a high-finesse optical cavity. Within CavityMicroscope the fellow will combine two lines of expertise, which he will acquire in the outgoing and return phase, overcoming current limitations. In the outgoing phase, CavityMicroscope builds upon the exceptional expertise in ultracold gases trapped in high-finesse cavities of Prof. Stamper-Kurn, Berkeley (USA), who is a leading scientist in the field. Designing a cutting-edge experimental setup and implementing cavity-aided imaging techniques will allow for non-destructive imaging, in three dimensions, of a quantum gas with single lattice-site resolution and single-atom sensitivity.This ground-breaking approach to quantum gas microscopy will promote EU research in this field during the return phase with Prof. Widera, Kaiserslautern (GER), who is an outstanding researcher regarding quantum systems and impurities in ultracold gases. Finally, CavityMicroscope will be used to non-destructively study and steer the dynamics of impurities in quantum systems. The complementary expertise of both hosts provides the fellow with a unique possibility to develop a novel research niche, pioneered by CavityMicroscope. In combination with the complementary training, this IOF will help the fellow to obtain scientific maturity and to actively shape research in quantum systems, which is a rapidly emerging field. Thereby, the IOF perfectly consolidates the fellow’s long-term aim to reach an independent research position in science in Europe.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DEMO-TRAITS (2012)

"Tree demography, functional traits and climate change"

Read More  

DYNEIN COORDINATION (2011)

Mechanical basis for motor protein coordination in axenomes leading to the beating of cilia and flagella

Read More  

DECMMQUBIT (2008)

Decoherence in magnetic molecules as qubits

Read More