MISICD

Macromolecular Ion-Solvent Interactions in Charged Droplets

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 309˙235 €
 EC contributo 309˙235 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-06-30   -   2016-09-08

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) coordinator 309˙235.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

macroions    computational    macromolecules    biological    droplet    esms    interactions    conformations    analytical    determine    gaseous    rate    charge    charging    molecular    bulk    fluctuations    electrospray    solvent    rare    environment   

 Obiettivo del progetto (Objective)

'We use computational and analytical methods to study the factors that determine charge state of macromolecules in droplet, gaseous and bulk environments and the relation of the charge state to the conformations of the macromolecules. Practical applications of the study are found in electrospray mass spectrometry (ESMS), which is an analytical technique used for the analysis mainly of biological molecules such as proteins, DNA, poly-saccharides. To understand the processes that take place in electrospray ionization, knowledge of the charging and the conformations of a macromolecule is required in bulk, droplet environment and gaseous state.The factors that determine the charge state distribution of the macromolecules in the droplet include the interactions between the analyte and the solvent in the droplet environment, acidity changes in the droplet, evaporation rate of the solvent vs. deprotonation rate of the macroions in the droplet, release mechanisms of macroions from droplets, and details in the operation of the electrospray instrument. We use advanced molecular simulation methods to study rare molecular fluctuations in the solvent and macromolecules that are central in describing quantitatively the above processes. These rare fluctuations are captured by methods for study activated processes in statistical mechanics. The study aims at understanding fundamental processes in the charging of macromolecules and laying the theoretical foundation for processes that give rise to the signals in the ESMS methods. The computational methodology that we develop for the sampling of the conformational changes can be used in a broader class of problems than those we study. Moreover, our studies in the gas-droplet and bulk environment will enhance our knowledge on the interactions that determine the conformations of biological macromolecules.'

Altri progetti dello stesso programma (FP7-PEOPLE)

METAGENOGRIDS (2008)

Algorithmics for Metagenomics on Grids

Read More  

IN-SENS (2013)

Deciphering inter- and intracellular signalling in schizophrenia

Read More  

KINPLANTS (2012)

Regulation of inward K+ channel activity in Arabidopsis by the Shaker subunit AtKC1: molecular mechanisms and role in control of stomatal opening and plant adaptation to water stress

Read More