PHASE

Phosphonic Acids: Surface Electrochemistry

 Coordinatore  

 Organization address address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Rodde
Email: send email
Telefono: 441214000000
Fax: 441214000000

 Nazionalità Coordinatore Non specificata
 Totale costo 221˙606 €
 EC contributo 22˙160 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-12-03   -   2016-12-02

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM

 Organization address address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Rodde
Email: send email
Telefono: 441214000000
Fax: 441214000000

UK (BIRMINGHAM) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

first    combination    determine    electrochemical    primary    simulations    battery    cell    toward    surfaces    adsorption    molecules    infrared    surface    fuel    phosphonic    reaction    acid    effect    peroxide    orr   

 Obiettivo del progetto (Objective)

'This project aims to evaluate the effect of phosphonic acid adsorption on metal surfaces. Much is known about the adsorption of these molecules on oxide surfaces but very little is known about their behaviour on metals. The first primary aim is to determine adsorption and phase behaviour quantitatively as a function of surface charge, which will be controlled by varying applied electrical potential. A strategic combination of classical electrochemical and modern surface analytical probes will be employed, including atomic force microscopy and the recently developed in situ infrared technique, PM-IRRAS (Polarisation Modulation Infrared Reflection Absorption Spectroscopy). These results will be combined together with computational simulations, a combination of density functional theory and molecular dynamics simulations, to form a complete picture of the surface aggregation phenomena of these molecules. The strategy will be to evaluate the phosphonic acid behaviour first on single crystal substrates and then on nanoparticle surfaces, which will be prepared on carbon substrate by electrodeposition. The second primary aim of the proposal project is to evaluate the effect of adsorption of these molecules on the electrochemical reduction of oxygen (ORR), a reaction of immense technological importance. Phosphonates have previously received very limited study for fuel cell and battery applications. We aim to determine whether phosphonic acid adsorption can be used as a tool to direct the selectivity of the ORR toward a specific product. If the reaction can be steered toward peroxide formation rather than water, this would open up possibilities for the commercial production of hydrogen peroxide (using existing fuel cell technology) and Li-air batteries, where the peroxo product is preferred to permit the re-charging of the battery.'

Altri progetti dello stesso programma (FP7-PEOPLE)

THINFACE (2013)

Thin-film Hybrid Interfaces: a training initiative for the design of next-generation energy devices

Read More  

THERMOSOMENANOREACT (2009)

Nanoreactors for controlled radical polymerizations based on the thermosome from Thermoplasma acidophilum: Templating synthesis of polymer nanoparticles and in-situ regeneration of the template

Read More  

SPACE AUT (2009)

Birational geometry and polynomial automorphisms of the affine space

Read More