WETLAND-ECOSYSBIOL

The hidden sulfur cycle in freshwater wetlands: an eco-systems biology approach to identify and characterize major microbial players

 Coordinatore UNIVERSITAT KONSTANZ 

 Organization address address: UNIVERSITATSSTRASSE 10
city: KONSTANZ
postcode: 78457

contact info
Titolo: Ms.
Nome: Christina
Cognome: Leib
Email: send email
Telefono: +49 7531 883605
Fax: +49 7531 883727

 Nazionalità Coordinatore Germany [DE]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAT KONSTANZ

 Organization address address: UNIVERSITATSSTRASSE 10
city: KONSTANZ
postcode: 78457

contact info
Titolo: Ms.
Nome: Christina
Cognome: Leib
Email: send email
Telefono: +49 7531 883605
Fax: +49 7531 883727

DE (KONSTANZ) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

sulfate    microorganisms    hidden    carbon    organic    wetlands    methane    sulfur    markers    cycle    function    srm   

 Obiettivo del progetto (Objective)

'Freshwater wetlands are a major source of the greenhouse gas methane but can also act as carbon sink, storing currently more than one third of the terrestrial organic carbon. Understanding their intertwined biogeochemistry and microbiology is therefore indispensable to foresee their influence to positive and negative climate feedback cycles. This proposal aims to elucidate the identity and ecophysiology of sulfate reducing microorganisms (SRM) driving a highly active but hidden sulfur cycle in wetlands, which is not apparent from the low standing pools of sulfate and thus has been severely understudied. Since sulfate reduction effectively competes with methanogenic degradation of organic matter, SRM have an important control function on methane production in wetlands. Little is known about wetland SRM. This stands in contrast to the high diversity of evolutionary deep-branching dsrAB genes, which are functional markers for SRM, indicating a large number of yet undiscovered SRM in wetlands. The expected scientific outcome of this proposal comprise: (i) identification of microorganisms involved in the hidden sulfur cycle with focus on SRM, (ii) elucidating their substrate preferences and preferred environmental conditions, (iii) identifying their interaction partners, and (iv) linking their function to their genome as well as their major transcripts and proteins. This will be achieved by an interdisciplinary approach, where (i) structure-function methods like stable isotope probing are linked to meta-genomics and -proteomics, (ii) high-throughput amplicon sequencing of phylogenetic markers and metatranscriptomics is combined with controlled experimental setups under monitored biogeochemical parameters, and (iii) by targeted cultivation of novel microorganisms. This proposal will be vital for me to build up an own research group, to strengthen my international collaborative network, and to maximize my integration in the European Research Area.'

Altri progetti dello stesso programma (FP7-PEOPLE)

UTMOST (2011)

Ultra-Stable Molecular Force Spectroscopy with Micromachined Transducers

Read More  

DIMENSION (2012)

The Role of Dimension in Metric Embedding

Read More  

MOSAIC (2010)

Method of Osteo-fracture Study through Automatic Identification and Classification: biomechanical analysis of bone trabecular structure

Read More