ILU

Local desingularization of quasi-excellent schemes

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yehuda
Email: send email
Telefono: 97226586618
Fax: +972 2 6513205

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-IRG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2014-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yehuda
Email: send email
Telefono: 97226586618
Fax: +972 2 6513205

IL (JERUSALEM) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

gabber    alterations    suffices       quasi    schemes    prime    extension    theorem    invertible    that    local    valuation    uniformization          gt    integral    excellent    inseparable      

 Obiettivo del progetto (Objective)

'Gabber recently proved a weak local uniformization theorem that states that for any quasi-excellent integral scheme X with a valuation v there exists an alteration Y->X (i.e. a proper generically finite morphism between integral schemes) such that v lifts to a valuation on Y with a regular center. Moreover, one can achieve that the degree of the field extension k(Y)/k(X) is coprime with a fixed prime number l invertible on X. My recent inseparable local uniformization theorem refines this when X is a variety. In this case, it suffices to consider alterations with a purely inseparable extension k(Y)/k(X). The main aim of this project is to develop in the context of general quasi-excellent schemes (including the mixed characteristic case) the technique that was used to prove the inseparable local uniformization theorem. In particular, this should lead to the following strengthening of Gabber's theorem: it suffices to consider only alterations Y->X such that k(Y) is generated over k(X) by (p_i)^n-th roots where each p_i is a prime number not invertible on X.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EMBAF (2011)

Estimating monotone boundaries and frontiers

Read More  

MICROCOLD (2009)

Microscopically designed environments for cold atoms

Read More  

PROCESSILLVIS (2013)

Illustrative Visualization of Processes

Read More