BILATERALCOMPUTATION

Bilateral computations in odor localization and its relation to behavior

 Coordinatore BAR ILAN UNIVERSITY 

 Organization address address: BAR ILAN UNIVERSITY CAMPUS
city: RAMAT GAN
postcode: 52900

contact info
Titolo: Ms.
Nome: Estelle
Cognome: Waise
Email: send email
Telefono: +972 35317439
Fax: +972 36353277

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    BAR ILAN UNIVERSITY

 Organization address address: BAR ILAN UNIVERSITY CAMPUS
city: RAMAT GAN
postcode: 52900

contact info
Titolo: Ms.
Nome: Estelle
Cognome: Waise
Email: send email
Telefono: +972 35317439
Fax: +972 36353277

IL (RAMAT GAN) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

hemispheres    brain    recent    mice    bilateral    behavior    ob    computations    imaging    bc    neurons    odor    recording    optogentic    communications    localization    neural    circuits    responses   

 Obiettivo del progetto (Objective)

'The brain is composed of two hemispheres that communicate with each other. While tremendous progress has been made in recent years in understanding the role of each sub brain region, understanding how bilateral communications (BC) contribute to brain computations and behavior is poorly understood. BC is crucial for spatial localization as well as higher cognitive functions such as language and perception of self in humans. Investigating BC has been very difficult to address due to lack of appropriate tools. The recent advance in optogentic, high resolution imaging and multi-unit electrophysiology provides a new opportunity to tackle these questions. In this study I will focus on the BC involved in odor localization as a starting point to understand BC and neural circuits. Understanding odor localization can have an enormous impact on many aspects of our lives such as, pest control, pollution management and plant-insect communications. Furthermore, understanding BC can advance computer science by suggesting new computational approaches that are based on parallelism. We will start by characterizing odor localization ability in mice. Then we will scan for neurons involved in odor localization tasks by recording bilateral neural responses using multi-channel recording in relevant brain regions of behaving mice. To unravel the neural circuits underlying BC in odor localization we will apply imaging techniques to measure the bilateral neural responses of both OB neurons to odors delivered from different directions. We will investigate the role of information exchange between the two OBs by checking the effect of transecting the olfactory communication lines between the two hemispheres on behavior and the neural responses. Using optogentic, we will activate and deactivate particular neurons in one OB of transgenic mice while recording the activity of mirror neurons in the second OB. Our research is aimed to open a new research direction on bilateral brain computations.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DWARFGALAXIES (2011)

Exploring evolutionary links between dwarf galaxy types using distant Local Group late-type dwarfs

Read More  

GPC IN BMP SIGNALING (2010)

Glypican5-supported endocytic control of BMP4 signaling

Read More  

MAPSPACE (2014)

"HOW HUMANS ENCODE, REPRESENT AND USE BASIC SPATIAL INFORMATION IN PERCEPTION AND ACTION: BEHAVIORAL AND NEURAL EVIDENCE"

Read More