1DH2OP

Coupling of One-Dimensional TiO2 with Hydrogenase: Simultaneous Visible-Light Driven H2 Production and Treatment of an Organic Pollutant

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 231˙926 €
 EC contributo 231˙926 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2015-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) coordinator 231˙926.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

hydrogen    visible    photosynthesis    dioxide    efficient    enzymes    reduce    energy    upon    titanium    artificial    electron    dye    light   

 Obiettivo del progetto (Objective)

'Sunlight is a vastly abundant energy form and provides an attractive possible energy-input to produce hydrogen through the splitting of water into its elements via the process of artificial photosynthesis. Within this theme, the proposal defines a new approach of coupling semiconductor nanomaterials with catalytically active biological enzymes to reduce protons to hydrogen in an aqueous electrolyte under visible light irradiation.

Building upon current state-of-the-art systems involving enzymes attached to dye-sensitized titanium dioxide nanoparticulates, herein we propose the use of one-dimensional titanium dioxide nanostructures. Benefitting from the intrinsic property of efficient directional electron transport, these structures will reduce charge recombination and hence could lead to improved performance. The visible light driven response via anion doping will eliminate the need for a ruthenium dye as photosensitizer, offering promise of a low cost and greatly simplified hybrid design. Moreover, upon suitable valence band position engineering, the addition of an organic pollutant could act as electron donor to enhance hydrogen production, while simultaneously being photodegraded.

This project brings innovation and advancement to the concept and design of more efficient and cost effective biomimetic artificial photosynthesis increasing the competitiveness of the European Research Area in renewable energy research. In line with action 2 of the FP7 Work Program-PEOPLE, this multidisciplinary project (4 major thematic areas: energy, nanoscience, biotechnology, and environmental) intends to train and develop Dr. Lee personally and professionally, reinforcing his career development.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TCAINMAND (2014)

Tri Continental Alliance in Numerical Methods applied to Natural Disasters

Read More  

LECHE (2008)

Lactase persistence and the Cultural History of Europe

Read More  

DEVELOP‐LEARNING (2014)

Developmental trajectories for model-free and model-based reinforcement learning: computational and neural bases

Read More