Coordinatore | ASTON UNIVERSITY
Organization address
address: ASTON TRIANGLE contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 231˙283 € |
EC contributo | 231˙283 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-04-01 - 2016-03-31 |
# | ||||
---|---|---|---|---|
1 |
ASTON UNIVERSITY
Organization address
address: ASTON TRIANGLE contact info |
UK (BIRMINGHAM) | coordinator | 231˙283.20 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Project POSSIBLE seeks to draw on recent developments in optical fibre sensors to tackle two important industrial sensing problems: the provision of an all optical fuel gauging system for aircraft and the development of simple, highly sensitive acoustic and vibration sensors for geophysical surveying and surveillance. Importantly, the project will form an excellent stage on which to prepare the Marie Curie Fellow for a future academic career involving innovation in collaboration with industrial partners. Key to the research is the developing maturity of fibre Bragg grating strain sensors recorded in polymer optical fibres, rather than the more established silica fibre. The much lower elastic modulus of polymers means that the sensors are much more sensitive to stress than their silica counterparts and therefore can offer enhanced sensitivity in certain applications, such as those targeted in this project. The project brings together an early stage researcher who already possesses significant expertise with silica fibre sensors as well as some experience of the polymer devices, with the Aston Institute of Photonic Technologies who are by several measures world leaders in polymer grating fabrication and applications development.'
Functional analysis of SCOC and FEZ proteins in autophagy using mammalian cell models and zebrafish
Read MoreFunctional characterization of FAN1, a structure-specific DNA repair nuclease
Read MoreCO-OPTION OF THE NKG2D LYMPHOCYTE RECEPTOR AS AN ONCOPROTEIN PROMOTING CANCER STEM CELL TRANSDIFFERENTIATION AND CANCER AUTONOMY
Read More