P75NTR

Understanding death-receptor signaling and physiology in the nervous system: A roadmap for the development of new treatments to neurodegenerative diseases and neurotrauma

 Coordinatore KAROLINSKA INSTITUTET 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-06-01   -   2019-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KAROLINSKA INSTITUTET

 Organization address address: Nobels Vag 5
city: STOCKHOLM
postcode: 17177

contact info
Titolo: Mrs.
Nome: åsa
Cognome: Garmager
Email: send email
Telefono: +46 8 524 87855
Fax: +46 8 333 864

SE (STOCKHOLM) hostInstitution 2˙500˙000.00
2    KAROLINSKA INSTITUTET

 Organization address address: Nobels Vag 5
city: STOCKHOLM
postcode: 17177

contact info
Titolo: Prof.
Nome: Carlos Fernando
Cognome: Ibañez Moliner
Email: send email
Telefono: 46852487660
Fax: 468339548

SE (STOCKHOLM) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

neural    receptors    genetic    ntr    pathways    ligand    harness       elucidate    physiological    logic    relevance    injury    distinct    mechanisms    death    neurodegeneration    molecular    nervous    discoveries    signaling    dissection    underlying    responses    function    receptor   

 Obiettivo del progetto (Objective)

'The aim of this proposal is to elucidate the molecular mechanisms and physiological relevance of death-receptor signaling in the nervous system and to harness this knowledge for the development of novel treatments to neurodegenerative diseases and neurotrauma. The main focus is on the p75 neurotrophin receptor (p75NTR), which is predominantly expressed in the developing nervous system and is highly induced upon different types of adult neural injury. Additional studies on other death receptors, such as DR6, are also described. p75NTR signaling can induce neuronal death, reduce axonal growth and decrease synaptic function, hence there is a good rationale for inhibiting p75NTR in neural injury and neurodegeneration. Recent discoveries from my laboratory have clarified the mechanism of p75NTR activation and provided new insights into the underlying logic of p75NTR signaling, paving the way for a genetic dissection of p75NTR function and physiology. These discoveries have open new avenues to elucidate the molecular mechanisms underlying ligand-specific responses and downstream signal propagation by death-receptors, unravel the physiological relevance of death-receptor signaling pathways in health and disease, and develop new strategies to block death-receptor activity in neural injury and neurodegeneration.

To drive progress in this research area it is proposed to: i) Elucidate the mechanisms by which p75NTR and other death receptors become activated by different ligands and elicit distinct, ligand-specific cellular responses; ii) Elucidate the mechanisms underlying the specificity and diversity of p75NTR signaling and decipher their underlying logic; iii) Elucidate the physiological significance of distinct p75NTR signaling pathways through genetic dissection in knock-in mice; iv) Harness this knowledge to identify and characterize novel p75NTR inhibitors.

This is research of a high-gain/high-risk nature, posed to open unique opportunities in research & development.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MOLBIL (2013)

Molecular Billiards in Slow Motion

Read More  

NANOCELLIMAGE (2011)

Ultrasmall Chemical Imaging of Cells and Vesicular Release

Read More  

COMPLEXPLAS (2013)

Complex Plasmonics at the Ultimate Limit: Single Particle and Single Molecule Level

Read More