CONPILUS

In-vitro self-assembly of bacterial pilus toward understanding biological long-range electron transport and the formation of conductive polymers for tissue regeneration

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 20 7594 8773
Fax: +44 20 7594 8609

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 231˙283 €
 EC contributo 231˙283 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-11-01   -   2016-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 20 7594 8773
Fax: +44 20 7594 8609

UK (LONDON) coordinator 231˙283.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

et    bacterial    mechanism    along    efficient    protein    pilus    conductivity    cell    scaffolding   

 Obiettivo del progetto (Objective)

'The extraordinary electron transport (ET) via the bacterial pilus has attracted much attention in recent years as they exhibit highly efficient electrical conductivity across mm’s (or even cm’s) length scales. However, there is no consensus about the specific ET mechanism via the pilus, and it seems that both the pilus structure, which is composed of a small protein, and the cytochromes array along the pilus have a role in the efficient ET. All of the measurements up to now have been conducted by using the bacterial biofilm or by trying to ‘catch’ a single pilus. This begs for a new ‘cleaner’ type of experiment in order to systematically study the ET properties along the pilus. Thus, the first goal of this proposal is to express the genes for the pilus protein along with the gene for the bacterial cytochrome, and try to self-assemble the pilus in-vitro. The lateral and perpendicular ET of individual pilus will be measured using several techniques in order to understand the predominant ET mechanism via the bacterial pilus. The next step of the proposal will include the use of the bacterial pilus to form a polymer with superior properties, such as high conductivity, redox stability, biocompatibility, flexibility and three-dimensional geometry. These set of characteristics are ideal toward cardiac and neural cell scaffolding. Thus, the final goal of the proposal will be to use the pilus-based polymers for cell scaffolding and tissue regeneration applications.'

Altri progetti dello stesso programma (FP7-PEOPLE)

GECO (2015)

Dynamics of Phase Oscillator Networks with Generalized Coupling

Read More  

APICOLIPID (2008)

Lipidomic Analysis and functional study of the lipid biosynthesis of the plastid of Apicomplexa parasites

Read More  

MILESTONE (2011)

A putative mechanism coupling DNA replication and translation in archaea conserved in eukaryotes

Read More