Coordinatore | THERACLION SA
Organization address
address: RUE ETIENNE DOLET 102 CENTRE D AFFAIRES contact info |
Nazionalità Coordinatore | France [FR] |
Totale costo | 202˙405 € |
EC contributo | 202˙405 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2015 |
Periodo (anno-mese-giorno) | 2015-06-15 - 2017-06-14 |
# | ||||
---|---|---|---|---|
1 |
THERACLION SA
Organization address
address: RUE ETIENNE DOLET 102 CENTRE D AFFAIRES contact info |
FR (MALAKOFF) | coordinator | 202˙405.80 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Focused Ultrasound Surgery (FUS) is an emerging, non-invasive modality, which involves the extracorporeal administration of High Intensity Focused Ultrasound (HIFU), a non-ionising form of radiation, to ablate via frictional effects diseased tissue in a specific target area. Although clinically effective the process is inherently inefficient, which has so far limited its wide spread use in medicine. The demonstration of a clinically applicable method for increasing the rate of energy absorption at the target region would herald a breakthrough for this technology. The proposed technique is cavitation mediated enhanced heating. The rationale here is that bubble activity at the ultrasound focus can lead to substantially higher rates of tissue heating. Cavitation refers to the formation of pockets of gas in the tissue exposed to HIFU. Unfortunately with the typical frequencies and intensities used, cavitation activity is known to rapidly evolve and cause risk of serious collateral damage to the surrounding healthy tissue. However, if cavitation can be monitored and controlled efficiently, faster treatment times can be achieved without negative side effects. The objective of the CavAblate project is to integrate new cavitation characterization detection and control techniques, with sono-elastographic capabilities for the next generation of cavitation mediated enhanced FUS ablation.'