OPUS

Optical Ultra-Sensor

 Coordinatore KUNGLIGA TEKNISKA HOEGSKOLAN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 2˙499˙958 €
 EC contributo 2˙499˙958 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-11-01   -   2019-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KUNGLIGA TEKNISKA HOEGSKOLAN

 Organization address address: Valhallavaegen 79
city: STOCKHOLM
postcode: 10044

contact info
Titolo: Mrs.
Nome: Gabriella
Cognome: Agren
Email: send email
Telefono: +46 8 7904308
Fax: +46 8 7904300

SE (STOCKHOLM) hostInstitution 2˙499˙958.00
2    KUNGLIGA TEKNISKA HOEGSKOLAN

 Organization address address: Valhallavaegen 79
city: STOCKHOLM
postcode: 10044

contact info
Titolo: Prof.
Nome: Markus
Cognome: Pollnau
Email: send email
Telefono: +468790 4105
Fax: +46 8 790 43 00

SE (STOCKHOLM) hostInstitution 2˙499˙958.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

sensing    interaction    mode    waveguide    trapping    intensity    first    distributed    frequency    light    laser    ultra    feedback    rare    related    demonstrations    read    cavity    thereby    sensitivity    waveguides    optical    linewidth    earth    detection    microchip    chip    lasers       ions    ilc    length   

 Obiettivo del progetto (Objective)

'This project aims at pushing the limits of optical sensing on a microchip by orders of magnitude, thereby allowing for ultra-high sensitivity in optical detection and enabling first-time-ever demonstrations of several optical sensing principles on a microchip. My idea is based upon our distributed-feedback lasers in rare-earth-ion-doped aluminum oxide waveguides on a silicon chip with ultra-narrow linewidths of 1 kHz, corresponding to Q-factors exceeding 10^11, intra-cavity laser intensities of several watts over a waveguide cross-section of 2 micrometer, and light interaction lengths reaching 20 km. Optical read-out of the laser frequency and linewidth is achieved by frequency down-conversion via detection of the GHz beat signal of two such lasers positioned in the same waveguide or in parallel waveguides on the same microchip. The sensitivity of optical detection is related to the laser linewidth, interaction length, and transverse mode overlap with the measurand; its potential of optically exciting ions or molecules and its optical trapping force are related to the laser intensity. By applying novel concepts, we will decrease the laser linewidth to 1 Hz (Q-factor > 10^14), thereby also significantly increasing the intra-cavity intensity and light interaction length, simplify the read-out by reducing the line-width separation between two lasers to the MHz regime, and increase the mode interaction with the environment by either increasing its evanescent field or perpendicularly intersecting a nanofluidic channel with the optical waveguide, thereby allowing for unprecedented sensitivity of optical detection on a microchip. We will exploit this dual-wavelength distributed-feedback laser sensor for the first-ever demonstrations of intra-laser-cavity (ILC) optical trapping and detection of nano-sized biological objects in an optofluidic chip, ILC trace-gas detection on a microchip, ILC Raman spectrometry on a microchip, and ILC spectroscopy of single rare-earth ions.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PHDVIRTA (2008)

Physically-based Virtual Acoustics

Read More  

DISQUA (2010)

Disorder physics with ultracold quantum gases

Read More  

TERRAGEN (2012)

Terragenesis: Using landscape ontogeny to predict the persistence of species

Read More