MIPPOD

Morphology and Interfacial Processes in Polymer Blends for Optoelectronic Devices

 Coordinatore CONSORZIO INTERUNIVERSITARIO PER LO SVILUPPO DEI SISTEMI A GRANDE INTERFASE 

 Organization address address: VIA DELLA LASTRUCCIA-SESTO FIORENTINO 3
city: FIRENZE
postcode: 50019

contact info
Titolo: Prof.
Nome: Piero
Cognome: Baglioni
Email: send email
Telefono: 0039-055-4573033
Fax: 0039-055-4573032

 Nazionalità Coordinatore Italy [IT]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-ERG-2008
 Funding Scheme MC-ERG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-09-30   -   2011-09-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CONSORZIO INTERUNIVERSITARIO PER LO SVILUPPO DEI SISTEMI A GRANDE INTERFASE

 Organization address address: VIA DELLA LASTRUCCIA-SESTO FIORENTINO 3
city: FIRENZE
postcode: 50019

contact info
Titolo: Prof.
Nome: Piero
Cognome: Baglioni
Email: send email
Telefono: 0039-055-4573033
Fax: 0039-055-4573032

IT (FIRENZE) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

organic    fuels    blend    performance    mixing    polymer    polymers    photovoltaic    structure    optoelectronic    self    leds   

 Obiettivo del progetto (Objective)

'Fossil fuels consumption is no longer going to be substained both for its environmental impact and for the limited availability of such fuels. Solar energy produced from photovoltaic cells based on organic or organic/inorganic hybrid materials has been proposed as a sustainable alternative. By selectively chosing the electronic properties of two semiconducting polymers, and by mixing them in a polymer blend formed on solid substrate, well defined and efficient LEDs and photovoltaic diodes can be prepared. However, important issues like, the identification of the quantum-mechanical states involved in electron-hole recombination at the hetero-interface and the effect of intermolecular interactions on the optoelectronic response, have still to be investigated in detail. Most of these optoelectronic properties rely on the nature and distribution of the polymer heterojunctions in the blend therefore, the meso-scale structure determined by the kinetics of the phase separation process occurring during the blend formation, plays a crucial role on the devices performance. Our aim is to achieve a control over the molecular self-assembly, length scales and degree of self-organisation, of newly synthesized polyelectrolyte semiconductors and, correlate these features with their optoelectronic properties in LEDs and photovoltaic devices. Small Angle X-ray Scattering (SAXS) and Scanning Probe Microscopy (SPM) studies will allow us to determine the microscale and nanoscale structure of the blend, in terms of such parameters as particle sizes, shapes, distribution, and surface-to volume ratio. The present work will be developed in collaborations with researchers having a long time experience on making organic based optoelectronic devices and this will ensure that the output of the morphological study will be directely correlated to the device’s performance. This study will ultimately enable the optimization of these optoelectronic devices in terms of polymers interfacial mixing.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ERICARB (2010)

Does plant C regulate the decomposition of soil organic matter by ericoid mycorrhizal fungi?

Read More  

BELONGINGNESS (2013)

Where do I belong? The effects of uncertainty-identity on acculturation outcomes for migrants in Germany

Read More  

MONICA (2012)

"Mobile Cloud Computing: Networks, Services and Architecture"

Read More