Coordinatore | UNIVERSITY OF NEWCASTLE UPON TYNE
Organization address
address: Kensington Terrace 6 contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 288˙317 € |
EC contributo | 288˙317 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2007-3-1-IAPP |
Funding Scheme | MC-IAPP |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-08-01 - 2012-07-31 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITY OF NEWCASTLE UPON TYNE
Organization address
address: Kensington Terrace 6 contact info |
UK (NEWCASTLE UPON TYNE) | coordinator | 0.00 |
2 |
Advanced Cleaning Systems (ACS)-Umwelttechnik GMBH & Co. KG
Organization address
address: Steinerweg 51 contact info |
DE (Rielasingen-Worblingen) | participant | 0.00 |
3 |
L'OREAL SA
Organization address
address: 14 Rue Royale contact info |
FR (PARIS) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'All industries produce residuals during normal operation, and the handling of such materials is a regular component of business activity. Traditionally, such residuals are treated prior to disposal; however, most residual processing methods are designed to reduce residual mass rather than minimize energy use, which is a growing problem as the cost of energy continues to rise. As an example up to 10% of the energy cost of a personal care product manufacturing plant (PCP) is used in residual management. Given this high cost, residual handling methods must be re-evaluated and made more energy efficient both to reduce costs, but also to make these processes more environmentally friendly. The purpose of ENERMIN is to develop alternate residuals management technologies for the PCP industry that will broadly reduce energy use. Although this is valuable technical goal, the second major intention of this work is to stimulate interactions between a world-leading academic group (Newcastle University; United Kingdom), a large corporation (L’Oreal Industries; France), and a SME (ACS-Umwelttechnik; Germany) while generating technologies that can be translated broadly to small and large operations inside and outside of the PCP industry. Specific technical approaches for energy minimization will include retrofitting existing aerobic systems to lower air needs; source separation of carbon-rich residual streams for pre-processing prior to aeration, and a new focus on waste-to-energy technologies (i.e., anaerobic systems). The broad goal here is to develop residual management systems that convert residuals into “resources” that produce rather than use energy, possibly by enhanced methane generation as a biofuel. Finally, this project will permit the extension of ECOSERV, a current FP6 project that is applying fundamental principles from ecology, mathematics, and molecular biology to improve residual management approaches, which can then be extended to the “practical” world via ENERMIN'
BRIDGING THE TIMESCALES IN FAULT-SLIP ACCUMULATION: FROM THE EARTHQUAKE RECORD TO THE GEOLOGICAL RECORD
Read More"Pathways, ecological and genomic consequences of genome duplication in Arabidopsis arenosa, an overlooked diploid-polyploid member of the model genus Arabidopsis"
Read More