QUASOM

"Quantifying and modelling pathways of soil organic matter as affected by abiotic factors, microbial dynamics, and transport processes"

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 946˙800 €
 EC contributo 946˙800 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-09-01   -   2014-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Markus
Cognome: Reichstein
Email: send email
Telefono: -579865
Fax: -580792

DE (MUENCHEN) hostInstitution 0.00
2    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Petra
Cognome: Bauer
Email: send email
Telefono: +49 3641 576600
Fax: +49 3641 577600

DE (MUENCHEN) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

biosphere    climate    modeling    biogeochemical    explicitly    interactions    model    soil    physicochemical    models    mesocosm    global    vegetation    transport    terrestrial    coupled    cycles    biological    organic    experiments   

 Obiettivo del progetto (Objective)

'Soils play a critical role in the coupled carbon-cycle climate system. However, our scientific understanding of the role of soil biological-physicochemical interactions and of vertical transport for biogeochemical cycles is still limited. Moreover the representation of soil processes in current biosphere models operating at global scale is crude compared to vegetation processes like photosynthesis. Hence, the general aim of this project is to improve our understanding of the key interactions between the biological and the physicochemical components of the soil system that are often not explicitly considered in current experimental and modeling approaches. However, these interactions are likely to influence the biogeochemical cycles for a large part of the terrestrial biosphere and thus have the potential to significantly impact the Earth System as a whole. This will be achieved through an approach that integrates new soil mesocosm experiments, field data from ongoing European projects and soil process modeling. In mesocosm tracer experiments the fate of new and autochthonous soil organic matter will be followed under varying temperature and moisture regimes, explicitly investigating the role of microbiota. This project will test the hypothesis that transfer coefficients between soil organic matter pools, respiration and microbial biomass formation are constant as implemented in current soil organic matter models. Novel soil model structures will be developed that may explicitly account for the role of microbes and transport for soil organic matter dynamics. This will be supported by multiple-constraint model identification techniques, which allows testing and achieving model consistency with several observation types and theory. The soil modules will be incorporated into global terrestrial biosphere models which are coupled and uncoupled to the atmosphere allowing specific model experiments for investigating feedback mechanisms between soil, climate, and vegetation.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

REINS (2014)

Responsible Intelligent Systems

Read More  

DELCANCER (2012)

The role of loss-of-heterozygosity in cancer development and progression

Read More  

5HT-OPTOGENETICS (2010)

Optogenetic Analysis of Serotonin Function in the Mammalian Brain

Read More