EPIGEPLAS

Epigenetic determinants of the genome that govern cellular plasticity

 Coordinatore FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙085˙000 €
 EC contributo 1˙085˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-10-01   -   2013-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Novartis Forschungsstiftung

 Organization address address: Maulbeerstrasse 66
city: BASEL
postcode: 4058

contact info
Titolo: Mrs.
Nome: Dorothy
Cognome: Searles
Email: send email
Telefono: +41 61 6972982
Fax: +41 61 6973976

CH (BASEL) beneficiary 0.00
2    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH

 Organization address address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058

contact info
Titolo: Dr.
Nome: Dirk
Cognome: Schübeler
Email: send email
Telefono: +41 61 6978269
Fax: +41 61 6973976

CH (BASEL) hostInstitution 0.00
3    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH

 Organization address address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058

contact info
Titolo: Mrs.
Nome: Dorothy
Cognome: Searles
Email: send email
Telefono: +41 61 6972982

CH (BASEL) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

regulatory    transcriptional    dna    genetic    stable    regulation    pluripotent    differentiation    models    plasticity    modifications    cellular    cells    epigenetic   

 Obiettivo del progetto (Objective)

'Differentiation events in mammalian development involve stable resetting of transcriptional programs, which entails changes in the epigenetic state of target sequences defined by modifications of DNA and bound nucleosomes. These recently identified epigenetic layers modulate DNA accessibility in a positive and negative manner and thus could make genetic readouts context-dependent and dynamic. The proposed project aims to quantify the epigenetic contribution to cellular differentiation as a key event in development. By applying parallel genomic approaches we will comprehensively define the epigenome and its plasticity during cellular commitment of pluripotent murine stem cells into defined terminally differentiated cells. We will focus on DNA methylation and its interplay with several histone modifications as a way to achieve stable gene silencing. The resulting global profiles will gain insights into targeting principles and generate statistical, predictive models of regulation. From these mechanistic models will be derived and tested by genetically interfering with genetic and epigenetic regulatory pathways and by dissecting DNA sequence components involved in specifying targets. These experiments aim to unravel the crosstalk between epigenetic regulation and cell plasticity, the underlying molecular circuitry in pluripotent and unipotent cells and ultimately help to incorporate epigenetic regulation into current transcriptional regulatory models.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

BINARYBIO (2012)

Commercialization of distributed & cloud solutions for biomolecular simulation and free energy calculation

Read More  

CELLUFUEL (2012)

Designer Cellulosomes by Single Molecule Cut & Paste

Read More  

GROWTHCONTROL (2009)

Dissecting the transcriptional mechanisms controlling growth during normal development and cancer

Read More