Coordinatore | ARISTOTELIO PANEPISTIMIO THESSALONIKIS
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Greece [EL] |
Totale costo | 1˙128˙400 € |
EC contributo | 1˙128˙400 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2007-StG |
Funding Scheme | ERC-SG |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-10-01 - 2013-09-30 |
# | ||||
---|---|---|---|---|
1 |
FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS
Organization address
address: N PLASTIRA STR 100 contact info |
EL (HERAKLION) | beneficiary | 0.00 |
2 |
FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN NURNBERG
Organization address
address: SCHLOSSPLATZ 4 contact info |
DE (ERLANGEN) | beneficiary | 0.00 |
3 |
ARISTOTELIO PANEPISTIMIO THESSALONIKIS
Organization address
address: Administration Building, University Campus contact info |
EL (THESSALONIKI) | hostInstitution | 0.00 |
4 |
ARISTOTELIO PANEPISTIMIO THESSALONIKIS
Organization address
address: Administration Building, University Campus contact info |
EL (THESSALONIKI) | hostInstitution | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The objective is to develop a robust multifunctional framework/probe for capturing the evolution of deformation and failure in a variety of processes at the micro-nano transition regime. An interdisciplinary approach will be pursued based on fundamental theory and experiment, in conjunction with multiscale simulations for micro/nanotechnology applications. The approach is unconventional as it ventures to extend continuum mechanics down to the micro/nano regime and verify this through nanoindentation and atomic force microscopy techniques. It is also unique as the new phenomenology introduced for establishing this extension (higher order gradients accounting for microscopic processes and interfacial energy terms accounting for nanoscopic phenomena) will be substantiated through hybrid (ab initio-atomistic-defect-finite element) simulations. The framework will be employed to consider fracture and size effects in a number of micro-nano scale transition configurations ranging from nanograined aggregates and nanolayered structures to nanotubes and micropillars, and from Li-ion battery electrodes to bioactive interfaces. Other micro/nano objects such as quantum dots, nanowires and NEMS/MEMS devices, as well as biomolecular microcrystalline membranes leading to living cell division will be considered. In a sense this “scale” transition theory is reminiscent in scope to Landau’s “phase” transition theory where a variety of different physical phenomena can be treated within a common framework. This optimism stems from the PI’s previous success with this approach, as well as Smalley’s remark that the “laws of continuum mechanics are amazingly robust for treating even intrinsically discrete objects only a few atoms in diameter”. A good mix of young researchers and mature scholars will be employed, thus connecting people and ideas through joint publications and scholarly activities in a critical area of fundamental and applied research.'
Understanding the molecular blueprint and functional complexity of the endocannabinoid metabolome in the brain
Read More