APPROXNP

Approximation of NP-hard optimization problems

 Coordinatore KUNGLIGA TEKNISKA HOEGSKOLAN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 2˙376˙000 €
 EC contributo 2˙376˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-01-01   -   2014-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KUNGLIGA TEKNISKA HOEGSKOLAN

 Organization address address: Valhallavaegen 79
city: STOCKHOLM
postcode: 10044

contact info
Titolo: Ms.
Nome: Harriett
Cognome: Johansson
Email: send email
Telefono: +46 8 790 7899
Fax: +46 8 7900930

SE (STOCKHOLM) hostInstitution 0.00
2    KUNGLIGA TEKNISKA HOEGSKOLAN

 Organization address address: Valhallavaegen 79
city: STOCKHOLM
postcode: 10044

contact info
Titolo: Prof.
Nome: Johan
Cognome: Håstad
Email: send email
Telefono: +46 8 790 6289
Fax: +46 8 790 0930

SE (STOCKHOLM) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

boolean    conjecture    functions   

 Obiettivo del progetto (Objective)

The proposed project aims to create a center of excellence that aims at understanding the approximability of NP-hard optimization problems. In particular, for central problems like vertex cover, coloring of graphs, and various constraint satisfaction problems we want to study upper and lower bounds on how well they can be approximated in polynomial time. Many existing strong results are based on what is known as the Unique Games Conjecture (UGC) and a significant part of the project will be devoted to studying this conjecture. We expect that a major step needed to be taken in this process is to further develop the understanding of Boolean functions on the Boolean hypercube. We anticipate that the tools needed for this will come in the form of harmonic analysis which in its turn will rely on the corresponding results in the analysis of functions over the domain of real numbers.

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

INTERACT (2013)

Counteracting psychosis by optimizing interaction

Read More  

EUT (2013)

Epistemic Utility Theory: Foundations and Applications

Read More  

LIGHT (2012)

advanced Light mIcroscopy for Green cHemisTry

Read More