PROSPERITY

Probing Stellar Physics and Testing Stellar Evolution through Asteroseismology

 Coordinatore KATHOLIEKE UNIVERSITEIT LEUVEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 2˙491˙200 €
 EC contributo 2˙491˙200 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-01-01   -   2013-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Dr.
Nome: Stijn
Cognome: Delauré
Email: send email
Telefono: -1248
Fax: -506

BE (LEUVEN) hostInstitution 0.00
2    KATHOLIEKE UNIVERSITEIT LEUVEN

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Prof.
Nome: Conny
Cognome: Aerts
Email: send email
Telefono: -339
Fax: -1310

BE (LEUVEN) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

seismic    envelope    close    critical    stars    hydrogen    evolution    description    physical    theory    massive    astrophysics    time    precision    branch    theoretical    stellar    data    red    giant    binary   

 Obiettivo del progetto (Objective)

'Our goal is to achieve a physical description of stellar interiors with an order of magnitude better precision in the physical quantities than we have now. We will concentrate on three outstanding critical issues in current stellar structure theory and solve them through a novel approach termed asteroseismology. 1. We will obtain a quantitative estimate of the amount of convective mixing and of the internal rotation profile for a broad range of stellar masses and evolutionary states, with specific emphasis on massive stars and on red giant stars. This will be done using new seismic data assembled by the space missions MOST, CoRoT and Kepler, which have a factor 1000 better precision than the ground-based data we had to rely on so far. 2. We will include, for the first time, the effect of a radiation-driven stellar wind on the theoretical description of stellar oscillations. This opens a new avenu: the seismic calibration of stellar evolution models of the most massive stars from the core-hydrogen burning up to the supernova stage. 3. We will build a new dedicated camera, MAIA, for the Mercator telescope at La Palma (Canary Islands), to investigate the badly understood common envelope phase of close binary stars. There are large unknowns in their evolution, mainly during the red giant phase when the two stellar components may share a common envelope. The recently discovered pulsating subdwarf O and B binaries must have lost their hydrogen envelope during a common envelope phase near the tip of the red giant branch. We will put tight seismic constraints on their outer hydrogen layer and mass and use these two diagnostics to perform a critical evaluation of close binary evolution theory along the giant branch. Our project encompasses engineering, observational astronomy, theoretical astrophysics, time series analysis and statistical clustering. It will revolutionise stellar evolution theory for a variety of stars and all topics in astrophysics that build on it.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TRACSYMBOLS (2010)

Tracing the evolution of symbolically mediated behaviours within variable environments in Europe and southern Africa

Read More  

NANOTRIGGER (2012)

Triggerable nanomaterials to modulate cell activity

Read More  

ORIGIN (2012)

The Origin of Solar Activity

Read More