NETMIMO

Network Multiple-Input Multiple-Output for Advanced Wireless Systems

 Coordinatore UNIVERSIDAD POMPEU FABRA 

 Organization address address: PLACA DE LA MERCE 10-12
city: BARCELONA
postcode: 8002

contact info
Titolo: Ms.
Nome: Eva
Cognome: Martín
Email: send email
Telefono: +34 93 5422898
Fax: +34 93 5421440

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-3-IRG
 Funding Scheme MC-IRG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-04-01   -   2012-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSIDAD POMPEU FABRA

 Organization address address: PLACA DE LA MERCE 10-12
city: BARCELONA
postcode: 8002

contact info
Titolo: Ms.
Nome: Eva
Cognome: Martín
Email: send email
Telefono: +34 93 5422898
Fax: +34 93 5421440

ES (BARCELONA) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

uplink    communicates    capacity    signals    spectral    limited    assigned    then    pool    causing    fact    happen    efficiency    bandwidth    blurred    netmimo    error    theoretically    classified    link    virtue    once    cellular    universal    patterns    influence    wireless    power    framework    intended    superposition    multiple    backbone    gets    leverages    become    collected    redundancy    network    close    cell    serve    ultimately    own    incremental    cease    hence    detection    longer    transcend    interference    intercell    almost    networks    site    inter    correction    routed    wrong    premise    powerful    place    made    frequency    serving    optical    massive    becoming    burden    idea    unlimited    sites    merely    properly    connected    last    notion    reuse   

 Obiettivo del progetto (Objective)

'Over the last two decades, the progressive introduction of advanced techniques (forward error correction, power control, link adaptation, incremental redundancy, etc) and the massive increases in processing power have taken wireless cellular systems to the point where links are operating close to their capacity and frequency reuse patterns are becoming universal. At this juncture, cellular systems have become limited, first and foremost, by their own interference. It is becoming increasingly clear that major new improvements in spectral efficiency will have to entail addressing such intercell interference. Traditionally, a user is assigned to a cell and it then communicates with that cell site while causing interference to all other sites in the system. The premise of NetMIMO is that, in the uplink specifically, intercell interference is merely a superposition of signals that were intended for other cell sites, i.e., signals that happen to have been collected at the wrong place. If these signals could be properly classified and routed, they would in fact cease to be interference and become useful in the detection of the information they bear. (A dual observation can be made about the downlink.) This insight naturally leads to the conclusion that, ultimately, the goal should be to serve all users through all the sites within their range of influence. While challenging, this is theoretically possible by virtue of the fact that the cell sites are connected by a powerful backbone network. This ambitious idea leverages the almost unlimited bandwidth available in optical wireline networks to transcend the burden of wireless intercell interference. In the NetMIMO framework then, the notion of a cell gets blurred once users are no longer assigned to specific sites. Ultimately, there is a network of sites serving a pool of users. While this is a conceptually simple proposition, it poses numerous hurdles and challenges that this project aims to resolve.'

Introduzione (Teaser)

Wireless cellular systems are currently limited by their own interference. Researchers in Spain are investigating how to address this by improving spectral efficiency.

Descrizione progetto (Article)

Over the last 20 years, huge advances have been made in wireless cellular systems, for example in the field of forward error correction, power control, link adaptation and incremental redundancy, alongside massive increases in processing power. This means that these systems are now operating close to their capacity, and frequency reuse patterns are becoming universal.

Inter-cell interference is one of the biggest problems facing wireless cellular systems. Traditionally, a user is assigned to a cell and then communicates with that cell site while causing interference to all other sites in the system. Researchers involved in the 'Network multiple-input multiple-output for advanced wireless systems' (Netmimo) project want to iron out this difficulty. They began with the premise that in the uplink, inter-cell interference is merely a superposition of signals that were intended for other cell sites - in other words, signals that happen to have been collected at the wrong place.

The scientists believe that if these signals could be properly classified and routed, they would in fact cease to be interference and become useful in the detection of the information they carry. Hence, ultimately, the goal should be to serve all users through all the sites within their range of influence.

The research team is taking up the challenge, saying that this is theoretically possible by virtue of the fact that the cell sites are connected by a powerful backbone network. This ambitious idea leverages the almost unlimited bandwidth available in optical wire-line networks to transcend the burden of wireless inter-cell interference. Hence, according to the Netmimo framework, the notion of a cell gets blurred once users are no longer assigned to specific sites, and ultimately, there is a network of sites serving a pool of users.

Altri progetti dello stesso programma (FP7-PEOPLE)

AMPT (2010)

"Ancient Maritime Pitch and Tar: a multi-disciplinary study of sources, technology and preservation"

Read More  

TRADITION (2011)

The Dialectic of Tradition and the Transformation of Theological Knowledge in Modern Jewish Writing

Read More  

EXPRESSION DYNAMICS (2014)

"Orchestrating the Transcriptome and Proteome in Time and Space: Quantitative Modeling of Protein Production, Degradation and Localization in Mammalian Systems"

Read More