REDUCE

"Classifying the conjugacy relation of the group of C2 diffeomorphisms of the unit circle, and characterizing isometry groups of separable ultrametric spaces."

 Coordinatore INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK. 

 Organization address address: ul. Sniadeckich 8
city: WARSZAWA
postcode: 956

contact info
Titolo: Prof.
Nome: Feliks
Cognome: Przytycki
Email: send email
Telefono: +48 22 522 81 61
Fax: +48 22 629 39 97

 Nazionalità Coordinatore Poland [PL]
 Totale costo 75˙000 €
 EC contributo 75˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-3-IRG
 Funding Scheme MC-IRG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-04-01   -   2011-08-01

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK.

 Organization address address: ul. Sniadeckich 8
city: WARSZAWA
postcode: 956

contact info
Titolo: Prof.
Nome: Feliks
Cognome: Przytycki
Email: send email
Telefono: +48 22 522 81 61
Fax: +48 22 629 39 97

PL (WARSZAWA) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

polish    class    executioner    question    ultrametric    coming    kechris    diffeomorphisms    gao    groups    isometry    relation    spaces    countable    equivalence    complicated   

 Obiettivo del progetto (Objective)

'The first part of the project is concerned with a classification of the orbit equivalence relation E coming from the conjugation action of the group of all diffeomorphisms of class C2 on itself. A well-known example given by Arnold shows that there exist C2 diffeomorphisms of the circle with equal rotation numbers, which are not conjugate by any smooth mapping. This raises a natural question as to how complicated relation E is. Methods coming from Borel reducibility theory will be used to estimate lower and upper bounds for complexity of E. In particular, the following problems will be studied. Is E essentially more complicated than the identity relation? Is D reducible to an equivalence relation with countable equivalence classes? Can D be classified by the isomorphism relation on a class of countable models? The second part of the project is a continuation of a line of research initiated by Gao and Kechris. It is devoted to studying Polish ultrametric spaces, that is, metric spaces satisfying a strong version of the triangle inequality, and their isometry groups. A structure theorem, proved by the executioner of the project, representing each separable ultrametric space as a 'bundle' with an ultrametric base and with homogeneous fibers will be further investigated. Its detailed study and analysis of the limit behavior of involved quotient maps will be used to characterize Polish ultrametric spaces and their isometry groups. This will provide an answer to a question posed by Gao nad Kechris. The implementation of the project will allow the executioner of the project to develop a solid research portfolio in a lively developing field of mathematics, contributing in this way to their lasting reintegration, and to European scientific excellence.'

Altri progetti dello stesso programma (FP7-PEOPLE)

YOUNG MINDS (2012)

The synaptic development of cortical circuitry in the young brain

Read More  

LICRYSTG (2013)

Single-crystalline Lithium-based model systems of future materials for electrochemical energy storage and data storage

Read More  

LANGCOGINT (2013)

The interface between language and cognition in neurodevelopmental disorders: Evidence from cross-linguistic comparisons

Read More