FROM-PDE

Frobenius Manifolds and Hamiltonian Partial Differential Equations

 Coordinatore SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Italy [IT]
 Totale costo 864˙000 €
 EC contributo 864˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-01-01   -   2013-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

 Organization address address: VIA BONOMEA 265
city: TRIESTE
postcode: 34136

contact info
Titolo: Mr.
Nome: Luca
Cognome: Bardi
Email: send email
Telefono: 390404000000
Fax: 390404000000

IT (TRIESTE) hostInstitution 864˙000.00
2    SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

 Organization address address: VIA BONOMEA 265
city: TRIESTE
postcode: 34136

contact info
Titolo: Prof.
Nome: Boris
Cognome: Dubrovin
Email: send email
Telefono: 390404000000
Fax: 390404000000

IT (TRIESTE) hostInstitution 864˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

painlev    geometric    theory    asymptotic    pde    library    oscillatory    idea    forms    eacute    numerical    analytic    hamiltonian    integrable    nonlinear    description    integrability    pdes    regimes    universal    solutions   

 Obiettivo del progetto (Objective)

'The basic idea of the project is to apply methods and results of the theory of integrable systems to non-integrable PDEs. We do not promise to solve any PDE; however, in certain strongly nonlinear regimes, solutions to a conservative non-integrable PDE exhibit integrable behaviour. The realization of this idea, supported by some preliminary analytical and numerical results, will consist of three main tasks: 1) classify normal forms of quasilinear Hamiltonian PDEs and their perturbations; 2) reduce the lists of asymptotic solutions to an abridged list of universal forms represented via Painlevé transcendents, theta-functions, etc.; 3) establish matching rules between the universal asymptotic expansions. Differential-geometric methods based on the theory of Frobenius manifolds will be crucial in solving the classification problems; analytic and algebro-geometric techniques applied to the Hurwitz spaces of Riemann surfaces will be instrumental in the description of nonlinear oscillatory regimes; selected solutions to Painlevé equations and their generalizations will be needed for the analytic description of transitions from regular to oscillatory behaviour. The project is aiming at creation of an online library of the main qualitative types of behaviour of solutions to large classes of nonlinear evolutionary PDEs supplied with analytic expressions, numerical codes and visualization tools, as well as with tests of existence of a Hamiltonian structure, integrability or almost integrability. Such a library will both stimulate the research in the field and lead to a high visibility of the project.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DARE (2008)

Soil Foundation Structure Systems Beyond Conventional Seismic Failure Thresholds: Application to New or Existing Structures and Monuments

Read More  

HEALTHCYCLE (2011)

"Economic Cycles, Employment and Health: Disentangling Causal Pathways in a Cross-National Study"

Read More  

GRBS (2009)

Gamma Ray Bursts as a Focal Point of High Energy Astrophysics

Read More