PLASMONICS

Frontiers in Surface Plasmon Photonics - Fundamentals and Applications

 Coordinatore CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 2˙200˙000 €
 EC contributo 2˙200˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-01-01   -   2014-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE

 Organization address city: Strasbourg
postcode: 67000

contact info
Titolo: Mr.
Nome: Jean
Cognome: Gagneux
Email: send email
Telefono: +33 368855215
Fax: +33 368855216

FR (Strasbourg) hostInstitution 2˙200˙000.00
2    CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE

 Organization address city: Strasbourg
postcode: 67000

contact info
Titolo: Prof.
Nome: Thomas
Cognome: Ebbesen
Email: send email
Telefono: +33 368855117
Fax: +33 368855118

FR (Strasbourg) hostInstitution 2˙200˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

circuits    modes    progress    circuitry    surface    casimir    nano    sp    interactions    surfaces    light    optical    plasmons    sps    molecule    components    complete    techniques    metal   

 Obiettivo del progetto (Objective)

'Surface plasmons have generated considerable renewed interest through a combination of scientific and technological advances. In particular with the progress nanofabrication techniques, the properties of surface plasmons (SP) can now be controlled by structuring metals at the nanometer scale. The overall objective of this proposal is to manipulate and control the properties of the SPs to analyze fundamental phenomena through which new capacities can emerge. The project is divided in four parts with strong overlap: 1) SP enhanced devices: We plan to use the benefits provided by SPs to enhance devices or create new device architectures. Textured metal surfaces, and the associated SP modes, can be used as antennas to extract, capture and control light in a variety of applications that include imaging and polarization sensing, nano-optical elements and detectors. 2) SP circuitry: To achieve complete miniature SP photonic circuits, a number of components to launch SP, control their propagation and finally decouple SP back to light are necessary. Much progress has been made in this direction but many challenges remain at the level of individual components and complete circuits that will be explored. 3) Molecule SP interactions: Molecule - SP strongly coupled interactions are expected to modify extensively photophysical and photochemical processes that will be studied by time resolved techniques. This issue also has implications for generating all optical control needed in SP circuitry. 4) Casimir effect and SPs: The tailoring of the Casimir force by enhancing the contribution of SP modes has been proposed by theoretical studies. Experiments will be undertaken to test the relationship between Casimir physics and plasmonics using nanostructured metal surfaces which could have significant consequences for nano-electro-mechanical systems. For each of these subjects, the objectives are at the cutting edge of the surface plasmon science and technology.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SUMO (2009)

Supramolecular Motive Power

Read More  

WEAR3D (2014)

Wearable Augmented Reality 3D Displays

Read More  

CHROMHERITANCE (2014)

Chromosome inheritance from mammalian oocytes to embryos

Read More