Coordinatore | COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | France [FR] |
Totale costo | 1˙999˙843 € |
EC contributo | 1˙999˙843 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2008-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2009 |
Periodo (anno-mese-giorno) | 2009-02-01 - 2015-01-31 |
# | ||||
---|---|---|---|---|
1 |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address
address: RUE LEBLANC 25 contact info |
FR (PARIS 15) | hostInstitution | 1˙999˙843.50 |
2 |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address
address: RUE LEBLANC 25 contact info |
FR (PARIS 15) | hostInstitution | 1˙999˙843.50 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'We propose innovative approaches to electronic quantum noise going from very fundamental topics addressing the quantum statistics of few electrons transferred through conductors to direct applications with the realization of new types of versatile broadband photon detectors based on photon-assisted shot noise. We will develop electron counting tools which will not only allow to full characterization of electron statistics but also open the way to new quantum interference experiments involving few electrons or fractional charge carriers and will question our understanding of quantum statistics. Generation of few electron bunches will be obtained by the yet never done technique of short voltage pulses whose duration is limited to few action quanta, one quantum for one electron. Detection of electron bunches will be done by an unprecedented technique of cut and probe where carriers are suddenly isolated in the circuit for further sensitive charge detection. Using highly ballistic electron nanostructures such as Graphene, III-V semiconductors with light carriers, Carbone Nanotubes or simply tunnel barriers, we will bring mesoscopic quantum noise effects to higher temperature, energy and frequency range, and thus closer to applications. Inspired by late R. Landauer s saying: the noise IS the signal we will develop totally new detectors based on the universal effect of photon-assisted electron shot noise. These versatile broadband detectors will be used either for on-chip noise detection or for photon radiation detection, possibly including imaging. They will operate above liquid Helium temperature and at THz frequencies although projected operation includes room temperature and far-infrared range as no fundamental limitation is expected. The complete program, balanced between very fundamental quantum issues and applications of quantum effects, will open routes for new quantum investigations and offer to a broad community new applications of mesoscopic effects.'