Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 2˙299˙366 € |
EC contributo | 2˙299˙366 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-05-01 - 2016-04-30 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | hostInstitution | 2˙299˙366.57 |
2 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | hostInstitution | 2˙299˙366.57 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The mechanisms powering the transition from one cell state to another are the central engine of embryonic development. Genetic analysis over the last twenty years has provided us with a catalogue of genes and proteins that can be linked in linear and time dependent manners to specific states and transitions in this process. However this picture, characterized by complex charts of univocal relationships between different genes, is static and rigid and contrasts with the plasticity displayed by cells in many processes, in particular during repair and regeneration. The early mammalian embryo and the closely related ES cells provide extreme examples of this in the form of toti- and pluri-potency i.e. the maintenance of an open uncommitted state from which all cell types emerge. Understanding the molecular basis of these uncommitted states and the way they are established and regulated will not only provide a deeper insight into the operation of biological systems but will also new targets for regulation and therapies. This project revolves around the hypothesis that the plasticity displayed by cells in developmental and regulative processes is associated with dynamical cellular heterogeneities generated by transcriptional noise: phenotypic variability in genetically identical cells that arises from stochastic fluctuations during transcription and translation. Specifically I propose to provide measurements and analysis of gene expression noise in mammalian cells, its origin, regulation and use using ES cells and early mouse embryos as experimental systems.'
Lymphocyte microRNAs in health and disease: Understanding lymphocyte functions through the identification of microRNA target genes and exploiting serum microRNA signatures to monitor immune responses
Read MoreLinking glutamatergic spinal cord and brainstem neuronal circuits to the control of locomotor behavior
Read More