Coordinatore | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Switzerland [CH] |
Totale costo | 1˙286˙000 € |
EC contributo | 1˙286˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-StG |
Funding Scheme | ERC-SG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-01-01 - 2014-12-31 |
# | ||||
---|---|---|---|---|
1 |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address
address: BATIMENT CE 3316 STATION 1 contact info |
CH (LAUSANNE) | hostInstitution | 1˙286˙000.00 |
2 |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address
address: BATIMENT CE 3316 STATION 1 contact info |
CH (LAUSANNE) | hostInstitution | 1˙286˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'This proposal is devoted to the synthesis of ultra-pure semiconductor nanowire heterostructures for energy conversion applications in the photovoltaic domain. Nanowires are filamentary crystals with a very high ratio of length to diameter, the latter being in the nanometer range. Nanowires are of significant interest owing to their large surface-to-volume ratio and low-dimensional properties, as well as attractive building blocks of novel devices, including for novel energy conversion applications. The most widely employed nanowire growth method relies on the use of gold, which is known to be an impurity limiting mobility and carrier lifetime in semiconductors. It is generally realized that nanowires with higher purity could enable significant advances in both fundamental studies and technological applications. This proposal combines two complementary and essential aspects of semiconductor nanowires: (i) synthesis in extremely clean conditions and (ii) their application to new concepts of photovoltaic devices. The first part involves the use of Molecular Beam Epitaxy (MBE) system for the synthesis of III-V semiconductor nanowires and heterostructures. Special emphasis will be given in the synthesis of new heterostructure designs, i.e. across the nanowire radius and along the growth axis. The fabrication of ordered arrays of nanowires on large areas and on silicon substrates will also be investigated. In the second part, nanowire based solar cells will be designed, fabricated and characterized. Particular emphasis will be given toward understanding the role of geometry and interfaces in the energy conversion efficiency of the novel nanowire-based solar cells. Here, the high cleanliness and precise heteroepitaxial growth of MBE nanowires will allow us to perform fundamental studies, generating ground-breaking knowledge on the microscopic processes in energy conversion. This project will foster the use of nanotechnology in the energy challenges of the XXI century.'