INTERACTINGMICROBES

Social Interactions in Microbes

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙750˙000 €
 EC contributo 1˙750˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-StG
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) hostInstitution 1˙750˙000.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Prof.
Nome: Kevin Richard
Cognome: Foster
Email: send email
Telefono: +44 1865 281305
Fax: +44 1865 310447

UK (OXFORD) hostInstitution 1˙750˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

social    species    combine    bacterial    contain    strains    natural    upon    assays    groups    mechanisms    genetic    microbes    genotypes    aeruginosa    biofilms    communities    diversity    cell    host    biology   

 Obiettivo del progetto (Objective)

'Modern cell biology rests upon the power of studying pure cultures, often in shaking flasks. However, in nature cell groups are complex systems that frequently contain genetically-distinct populations. This genetic diversity ranges from point mutations that separate normal and cancerous tissue, through different strains of malaria in a host, to bacterial biofilms that contain a myriad of species. My research focuses on how genetic variability affects and explains the biology of cell groups, using microbes as a model system. The presence of different genotypes in a cell group leads to the potential for strong interactions. It is not sufficient, therefore, to study single genotypes alone; we need a systems biology of cell groups. Towards this aim, we combine the theories of social evolution and collective behaviour with the empirical study of microbes in two main approaches. The first focuses on the effects of mutation-driven diversity on a key bacterial trait - polymer secretion - that is central to bacterial life. The second approach focuses on the genetic diversity that arises when strains and species mix together. Here, we are developing a set of assays to investigate the effects of strain and species mixing centred upon Pseudomonas aeruginosa; a pathogenic bacterium that forms biofilms in the cystic fibrosis lung. We combine biofilm assays with transcriptomics to characterize the mechanisms that allow P. aeruginosa to invade environments containing benign species that might otherwise afford protection to a host. By taking a stepwise strategy that systematically adds back components of the physical and social environment, we aim to break down the daunting complexity of natural microbe communities. The ultimate goal is to build a predictive framework that goes from the mechanisms of social interaction among cells up to the emergent properties of natural communities.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ALMA (2008)

Attosecond Control of Light and Matter

Read More  

BEAUTY (2010)

Towards a comparative sociology of beauty The transnational modelling industry and the social shaping of beauty standards in six European countries

Read More  

ATHENE (2011)

"Designing new technical wastewater treatment solutions targeted for organic micropollutant biodegradation, by understanding enzymatic pathways and assessing detoxification"

Read More