FLEXSOLCELL

Development of Flexible single and tandem II-VI-Based High Efficiency Thin Film Solar Cells

 Coordinatore TALLINNA TEHNIKAULIKOOL 

 Organization address address: Ehitajate tee 5
city: TALLINN
postcode: 19086

contact info
Titolo: Prof.
Nome: Enn
Cognome: Mellikov
Email: send email
Telefono: -6202426
Fax: -6202995

 Nazionalità Coordinatore Estonia [EE]
 Totale costo 0 €
 EC contributo 259˙200 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IRSES-2008
 Funding Scheme MC-IRSES
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-10-01   -   2013-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TALLINNA TEHNIKAULIKOOL

 Organization address address: Ehitajate tee 5
city: TALLINN
postcode: 19086

contact info
Titolo: Prof.
Nome: Enn
Cognome: Mellikov
Email: send email
Telefono: -6202426
Fax: -6202995

EE (TALLINN) coordinator 259˙200.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

film    fabrication    cell    university    efficiency    cells    electronic    moldova    pv    deposition    cdte    thin    solar   

 Obiettivo del progetto (Objective)

'The primary aim of this research project is to develop low cost photovoltaic systems. Routes to decrease “cost per Watt” are either to reduce the cost of the technology or to increase its efficiency. The first of these is addressed by the use of thin film technology for low cost deposition at low temperatures and with low material usage. The second is addressed by using multiple threshold devices to push efficiencies beyond the Schockley-Queisser limit for single band-gap PV cells. Our research activities will focus on the study and development of new electronic devices for both PV and optoelectronic applications. Materials of interest for PV system include compound II-VI thin film semiconductors, especially CdTe, transparent conducting oxides required for the fabrication of solar cells. The main goal of this project is the development of polycrystalline growth techniques of high efficiency CdS/CdTe and ZnSe/CdTe solar cells on the polyimide substrates in different substrate configurations. Continuation of joint research towards the development of commercially viable CdTe-based solar cells will be build on the research collaboration, which will successfully combine the glass and flexible solar-cell fabrication by close space sublimation (CSS) and hot wall technique (HWT) at Moldova State University, chemical bath deposition (CBD) and electrodeposition at University of Trieste, Italy with the characterization and analysis expertise in mechanism of CdCl2 treatment process, annealing ambient and formation of electronic properties of the layers and junction at Tallinn University of Technology, Estonia. Specific goals of the project are (1) increased cell efficiency to near 15% by improvements in electrical contact and reductions in window-layer absorption, (2) demonstration that cell stability can be reasonably extrapolated to several years, and (3) enhanced measurement and analysis capability in Moldova.'

Altri progetti dello stesso programma (FP7-PEOPLE)

PLANT VOLATILES (2009)

Evolution of plant volatiles manipulation by vectored pathogens

Read More  

PEACE (2011)

Local ownership and peace missions

Read More  

CONTROLNETONCTRANS (2009)

Identifying network control elements in breast cancer oncogenic transformation via whole transcriptome analysis

Read More