THE CUTTING EDGE

The Cutting Edge: Insights from biomechanical tooth studies to explore the interaction of ecological diversity and evolutionary convergence

 Coordinatore UNIVERSITY OF BRISTOL 

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mr.
Nome: Mike
Cognome: Hobbs
Email: send email
Telefono: -9288390
Fax: -9250973

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 0 €
 EC contributo 181˙350 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IIF-2008
 Funding Scheme MC-IIF
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-10-01   -   2011-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mr.
Nome: Mike
Cognome: Hobbs
Email: send email
Telefono: -9288390
Fax: -9250973

UK (BRISTOL) coordinator 181˙350.77

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

multidisciplinary    morphology    questions    functional    bristol    experimental    diversity    researcher    record    create    ecological    time    fossil    incoming    relationship    modeling    biomechanical    university    tooth    structure    convergence   

 Obiettivo del progetto (Objective)

'The fossil record provides a unique opportunity to study changes in ecological diversity over time. However, understanding palaeoecological structure is complicated by evolutionary convergence, which can cause morphologically distinct organisms to fill the same ecological niche. Integration of palaeobiomechanical methodology is necessary to understand changes in ecological structure at a functional level through Earth history. The goal of this project is to examine questions of palaeoecology in jawed vertebrates as it relates to functional convergence through a multidisciplinary and novel analysis of the form and function of fossil teeth. A series of biomechanical analyses (including FEA, tooth modeling and physical testing methods developed by the incoming researcher) will explore the relationship between complex tooth morphology and functional abilities. The results from the biomechanical analyses will be used to construct a comprehensive functional tooth morphospace, which will allow us to address questions of functional tooth diversity over time, and the larger relationship between morphological and ecological diversity in the fossil record. This study will offer insights into palaecological patterns, the evolution and subsequent diversification of early tooth structures, and the relationship between overall morphology and emergent functional ability. The incoming researcher has developed novel, experimental biomechanical methods, which will be integrated with the state-of-the-art computer modeling and engineering methods already in place at the University of Bristol to create a multidisciplinary approach to palaeobiomechanics not used before. The project will comprise an international collaboration between labs in Europe, the USA and Australia, with the potential to create longstanding partnerships for the exchange of students and ideas, making the university of Bristol a world-wide hub for experimental and theoretical tooth mechanics.'

Altri progetti dello stesso programma (FP7-PEOPLE)

C4TRAN (2010)

C4 photosynthesis transcriptomics

Read More  

PDCTHERAPY (2010)

Development of universal vaccinal dendritic cells lines for cancer treatment

Read More  

FTG-ABS-SEQ (2014)

"Filling the Gaps, Chemo-enzymatic Approaches towards Abasic Site Sequencing"

Read More