MAQD

Mathematical Aspects of Quantum Dynamics

 Coordinatore UNIVERSITAET ZUERICH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 750˙000 €
 EC contributo 750˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-StG
 Funding Scheme ERC-SG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-12-01   -   2014-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN

 Organization address address: REGINA PACIS WEG 3
city: BONN
postcode: 53113

contact info
Titolo: Ms.
Nome: Daniela
Cognome: Hasenpusch
Email: send email
Telefono: +49 228 737274
Fax: +49 228 736479

DE (BONN) beneficiary 474˙754.80
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Mr.
Nome: Keith
Cognome: Cann
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) beneficiary 5˙347.02
3    UNIVERSITAET ZUERICH

 Organization address address: Raemistrasse 71
city: ZURICH
postcode: 8006

contact info
Titolo: Prof.
Nome: Benjamin
Cognome: Schlein
Email: send email
Telefono: +41 44 635 58 51

CH (ZURICH) hostInstitution 269˙898.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

quantum    body    anharmonic    proved    of    microscopic    class    mechanics    random    derivation    dynamics    plan    wigner    systems    evolution    continue    matrices    fundamental    statistical    universality    equations    on   

 Obiettivo del progetto (Objective)

'The main goal of this proposal is to reach a better mathematical understanding of the dynamics of quantum mechanical systems. In particular I plan to work on the following three projects along this direction. A. Effective Evolution Equations for Macroscopic Systems. The derivation of effective evolution equations from first principle microscopic theories is a fundamental task of statistical mechanics. I have been involved in several projects related to the derivation of the Hartree and the Gross-Piteavskii equation from many body quantum dynamics. I plan to continue to work on these problems and to use these results to obtain new information on the many body dynamics. B. Spectral Properties of Random Matrices. The correlations among eigenvalues of large random matrices are expected to be independent of the distribution of the entries. This conjecture, known as universality, is of great importance for random matrix theory. In collaboration with L. Erdos and H.-T. Yau, we established the validity of Wigner's semicircle law on microscopic scales, and we proved the emergence of eigenvalue repulsion. In the future, we plan to continue to study Wigner matrices to prove, on the longer term, universality. C. Locality Estimates in Quantum Dynamics. Anharmonic lattice systems are very important models in non-equilibrium statistical mechanics. With B. Nachtergaele, H. Raz, and R. Sims, we proved Lieb-Robinson type inequalities (giving an upper bound on the speed of propagation of signals), for a certain class of anharmonicity. Next, we plan to extend these results to a larger class of anharmonic potentials, and to apply these bounds to establish other fundamental properties of the dynamics of anharmonic systems, such as the existence of its thermodynamical limit.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MOSAIC (2010)

Patterning the surface of monolayer-protected nanoparticles to obtain intelligent nanodevices

Read More  

HIENA (2014)

Hierarchical Carbon Nanomaterials

Read More  

TWES (2011)

Transnational work and the evolution of sovereignty

Read More