Coordinatore | UNIVERSITE DE LIEGE
Organization address
city: LIEGE contact info |
Nazionalità Coordinatore | Belgium [BE] |
Totale costo | 4˙366˙894 € |
EC contributo | 2˙998˙182 € |
Programma | FP7-KBBE
Specific Programme "Cooperation": Food, Agriculture and Biotechnology |
Code Call | FP7-KBBE-2009-3 |
Funding Scheme | CP-FP |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-01-01 - 2013-02-28 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITE DE LIEGE
Organization address
city: LIEGE contact info |
BE (LIEGE) | coordinator | 670˙280.00 |
2 |
UNIVERSITY COLLEGE LONDON
Organization address
address: GOWER STREET contact info |
UK (LONDON) | participant | 270˙314.00 |
3 |
UNIVERSITAET BIELEFELD
Organization address
address: UNIVERSITAETSSTRASSE 25 contact info |
DE (BIELEFELD) | participant | 266˙400.00 |
4 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | participant | 265˙800.00 |
5 |
UNIVERSITE DE GENEVE
Organization address
address: Rue du General Dufour 24 contact info |
CH (GENEVE) | participant | 263˙691.00 |
6 |
Karlsruher Institut fuer Technologie
Organization address
address: Kaiserstrasse 12 contact info |
DE (Karlsruhe) | participant | 260˙000.00 |
7 |
UNIVERSITA DEGLI STUDI DI VERONA
Organization address
address: VIA DELL ARTIGLIERE 8 contact info |
IT (VERONA) | participant | 259˙980.00 |
8 |
WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Organization address
address: SCHLOSSPLATZ 2 contact info |
DE (MUENSTER) | participant | 259˙200.00 |
9 |
WEIZMANN INSTITUTE OF SCIENCE
Organization address
address: HERZL STREET 234 contact info |
IL (REHOVOT) | participant | 254˙694.00 |
10 |
WAGENINGEN UNIVERSITY
Organization address
address: DROEVENDAALSESTEEG 4 contact info |
NL (WAGENINGEN) | participant | 227˙823.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'SUNBIOPATH - towards a better sunlight to biomass conversion efficiency in microalgae - is an integrated program of research aimed at improving biomass yields and valorisation of biomass for two Chlorophycean photosynthetic microalgae, Chlamydomonas reinhardtii and Dunaliella salina. Biomass yields will be improved at the level of primary processes that occur in the chloroplasts (photochemistry and sunlight capture by the light harvesting complexes) and in the cell (biochemical pathways and signalling mechanisms that influence ATP synthesis). Optimal growth of the engineered microalgae will be determined in photobioreactors, and biomass yields will be tested using a scale up approach in photobioreactors of different sizes (up to 250 L), some of which being designed and built during SUNBIOPATH. Biomethane production will be evaluated. Compared to other biofuels, biomethane is attractive because the yield of biomass to fuel conversion is higher. Valorisation of biomass will also be achieved through the production of biologicals. Significant progress has been made in the development of chloroplast genetic engineering in microalgae such as Chlamydomonas, however the commercial exploitation of this technology still requires additional research. SUNBIOPATH will address the problem of maximising transgenic expression in the chloroplast and will develop a robust system for chloroplast metabolic engineering by developing methodologies such as inducible expression and trans-operon expression. A techno economic analysis will be made to evaluate the feasibility of using these algae for the purposes proposed (biologicals production in the chloroplast and/or biomethane production) taking into account their role in CO2 mitigation.'