Coordinatore | FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
Organization address
address: Hansastrasse 27C contact info |
Nazionalità Coordinatore | Germany [DE] |
Sito del progetto | http://www.simuglass.com |
Totale costo | 1˙197˙337 € |
EC contributo | 899˙994 € |
Programma | FP7-NMP
Specific Programme "Cooperation": Nanosciences, Nanotechnologies, Materials and new Production Technologies |
Code Call | FP7-NMP-2008-EU-India-2 |
Funding Scheme | CP-FP |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-01-01 - 2013-12-31 |
# | ||||
---|---|---|---|---|
1 |
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
Organization address
address: Hansastrasse 27C contact info |
DE (MUENCHEN) | coordinator | 464˙237.64 |
2 |
CENTRE DE RECHERCHES DE L'INDUSTRIEBELGE DE LA CERAMIQUE ASBL
Organization address
address: AVENUE GOUVERNEUR CORNEZ 4 contact info |
BE (MONS) | participant | 208˙425.00 |
3 |
KALEIDO TECHNOLOGY ApS
Organization address
address: RYTTERMARKEN 15-21 contact info |
DK (FARUM) | participant | 178˙931.36 |
4 |
ECOGLASS AS
Organization address
address: Arbesova 66a contact info |
CZ (Jablonec nad Nisou) | participant | 48˙400.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'For the production of complex optical components, the precision glass molding, where the novel moldable optical glass is directly deformed at high temperature, is fast emerging as a powerful and economically viable technology. To improve the efficiency, the complex shrinkage behavior of the glass material during the cooling step has to be understood and thus predicted by means of innovative collaboration between material science and computational modeling. The overall objective of this project is the development of a powerful synergistic computational FEM-tool for material modeling, process simulation and optimization of optical glass molding for optical glass molding. Based on this ambitious goal, the following scientific and technological objectives have to be realized: • Scientific analysis of the relevant thermal, mechanical, rheological and optical glass material properties and their dependence on the molding parameters (forming velocity, temperature, force, etc.), • Development of powerful computational material models able to describe and predict glass material behavior, • Implementation of the developed glass material models into a computational framework based on Finite Element Modelling (FEM), • Computational modelling of the glass molding process including the radiative heating and viscous flow of glass and the thermal and mechanical properties of other relevant components (molding tool, cooling concept, vacuum chamber and so on), • Validation of the developed FEM-tool in real glass molding experiments on an industrial glass molding machine for theoretical model optimization. These objectives finally lead to the development of an computational-based FEM-tool, in which the complex behavior of the glass material during the molding process is implemented. The basis for the development is the multidisciplinary approach between European and Indian researchers, which is essential for the material understanding.'