NMSSBLS

Nonlinear Mechanisms of Spatial Symmetry Breaking in Living Systems

 Coordinatore AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS 

 Organization address address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
Titolo: Dr.
Nome: Carlos Manuel
Cognome: Abad Ruiz
Email: send email
Telefono: +34-91-566 8852
Fax: +34-91-566 8913

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-RG
 Funding Scheme MC-IRG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-10-01   -   2013-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

 Organization address address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
Titolo: Dr.
Nome: Carlos Manuel
Cognome: Abad Ruiz
Email: send email
Telefono: +34-91-566 8852
Fax: +34-91-566 8913

ES (MADRID) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

complexity    chemical    cell    tools    biology    nonlinear    symmetry    cells    constitute    mechanism    organisms    pattern    physicists    mechanisms    reaction    spatial    experimental    patterns    background    breaking    living    biologists   

 Obiettivo del progetto (Objective)

'The study of experimental pattern formation mechanisms and its relevance to biology has been restricted to nonlinear chemical systems that produce spatial Turing patterns (CDIMA reaction), spiral waves (BZ reaction), propagating fronts and pulses (GO reaction). The important differences between these artificial systems and the natural spatial differentiation occurring in living cells do not allow for direct application of nonlinear dynamics tools to analyze biological patterns. The complexity of living organisms is also complicating the understanding of the underlying mechanisms for the arising of living patterns, therefore a much simpler symmetry breaking mechanism in living cells will allow a closer connection between developmental biologists and nonlinear physicists. The implementation of a spontaneous symmetry breaking mechanism in tissue culture mammalian cells using engineered cell-to-cell communication will constitute a highly improved model system for morphogenesis, early embryo development and skin patterning. This mechanism will be implemented using a highly interdisciplinary approach combining experimental /theoretical experience in chemical symmetry breaking systems and nonlinear physics tools together with a background in synthetic biology and signaling pathways. The candidate background in pattern formation, biophysics and cell biology combined with the expertise of the host laboratory (Elisa Martí at the Parc Cientific of Barcelona University) in symmetry breaking during early development constitute the perfect complement to carry out this type of research. An in-vitro pattern formation system will change the way biologists and physicists interact to understand the complexity of self-organization in living organisms.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CHEMBIO4TB (2010)

Chemical Biology for Tuberculosis Research

Read More  

ROMIDASHBOARD (2009)

Measuring and Improving Return on Marketing Investment with actionable dashboards: which marketing actions yield most returns in fast moving economies?

Read More  

FLY-PHY (2013)

The molecular physiology and the evolution of a new pathway promoting developmental stability

Read More