DYNA-MITO IN THYMUS

Role of mitochondria-shaping proteins in T cell development and migration in vivo

 Coordinatore UNIVERSITE DE GENEVE 

 Organization address address: Rue du General Dufour 24
city: GENEVE
postcode: 1211

contact info
Titolo: Prof.
Nome: Luca
Cognome: Scorrano
Email: send email
Telefono: 41223795235
Fax: -

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 180˙801 €
 EC contributo 180˙801 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IEF-2008
 Funding Scheme MC-IEF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-01-01   -   2011-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE

 Organization address address: Rue du General Dufour 24
city: GENEVE
postcode: 1211

contact info
Titolo: Prof.
Nome: Luca
Cognome: Scorrano
Email: send email
Telefono: 41223795235
Fax: -

CH (GENEVE) coordinator 180˙801.44

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

thymic    proteins    pro    fusion    mitochondrial    mouse    regulation    dynamics    fission    mitochondria    migration    cell   

 Obiettivo del progetto (Objective)

'Mitochondria are highly dynamic organelles that continuously move, divide and fuse in a highly regulated fashion. The balance between the opposing processes of mitochondrial fusion and fission is controlled by a growing family of “mitochondria-shaping” proteins. Evidence is accumulating on the role of these proteins in several functions, from apoptosis to Ca2 signaling, to morphogenesis of dendritic spines and synapses, to regulation of migration of leukocytes. The knowledge of the regulation of mitochondrial dynamics, as well as its impact on tissue development and homeostasis is currently limited. This project hypothesizes that changes in mitochondrial morphology are crucial events in determining migration and development of T cells in the thymus. We will capitalize on the mouse models available in the host laboratory to (i) address whether mitochondrial dynamics regulates motility of lymphocytes in intact mouse thymic lobes; (ii) understand whether pro-fusion or pro-fission proteins regulate T cell development; (iii) dissect the role of fusion vs. antiapoptotic effect of pro-fusion protein in T cell migration and development. Our project is expected to clarify the role of mitochondrial dynamics in a complex immunological scenario like thymic development.'

Altri progetti dello stesso programma (FP7-PEOPLE)

VIRTUALVIALS (2014)

"""Virtual vials"" for enhanced biomolecular analysis"

Read More  

HTR (2014)

Towards the structural understanding of human telomerase

Read More  

CN-I LIVER THERAPY (2014)

POTENTIAL OF INDUCED PLURIPOTENT STEM CELLS FOR THE TREATMENT OF CRIGLER-NAJJAR LIVER DISEASE: A PRECLINICAL SAFETY ASSESSMENT

Read More