STAHDPDE

Sparse Tensor Approximations of High-Dimensional and stochastic Partial Differential Equations

 Coordinatore  

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Non specificata
 Totale costo 1˙349˙564 €
 EC contributo 1˙349˙564 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-01-01   -   2014-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Christoph
Cognome: Buchs-Schwab
Email: send email
Telefono: +41-44-632 35 95
Fax: +41-44-632 11 04

CH (ZUERICH) hostInstitution 1˙349˙564.00
2    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Christoph
Cognome: Schwab
Email: send email
Telefono: +41 44 632 35 95

CH (ZUERICH) hostInstitution 1˙349˙564.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

elliptic    representations    hierarchic    numerical    realization    scales    independent    data    parabolic    parametric    either    spectral    multilevel    algorithmic    spaces    random    bases    solvers    tensor    adaptive    pdes    sparse    transport    complexity   

 Obiettivo del progetto (Objective)

'The present project addresses numerical analysis and algorithmic realization of sparse, adaptive tensor product discretizations of partial differential equations (PDEs) in high dimensions with stochastic data. The aim of the project is to develop mathematically founded adaptive algorithms which are based on sparse tensorization of hierarchic Riesz bases or frames. These will be hierarchic multilevel bases in the physical domain, either Finite Element wavelet type bases or hierarchical, multilevel bases. In the parameter domains corresponding either to random inputs or to phase spaces in transport problems, spectral type representations of ``polynomial chaos'' type shall be employed. Mathematical aim is to analyzed for a classes of elliptic and parabolic PDEs on high or possibly infinite dimensional parameter spaces adaptive, deterministic and dimension independent solution methods with convergence rates superior to those afforded by Monte Carlo Methods, in terms of accuracy vs. complexity. Algorithmic work will address design of data structures with minimal overhead for the efficient realization of the sparse tensor approximations. Applications include space-time adaptive solvers for elliptic, parabolic and certain parametric hyperbolic PDEs, nonlinear approximate spectral representations of nonstationary random fields, scale-resolving solvers of elliptic and parabolic problems with multiple scales with complexity independent of the number of scales, and sparse, adaptive numerical solvers for parametric transport problems. The project will be in collaboration with coworkers in France, Germany, UK, The Netherlands. The project involves mentoring postdocs and predocs who will be actively involved in all aspects of the research, as well as a teaching component.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

4D-GENOME (2014)

Dynamics of human genome architecture in stable and transient gene expression changes

Read More  

CPDENL (2011)

Control of partial differential equations and nonlinearity

Read More  

ACTIVEWINDFARMS (2012)

Active Wind Farms: Optimization and Control of Atmospheric Energy Extraction in Gigawatt Wind Farms

Read More